技术 内核相关 驱动开发 ZEROKO14 2023-11-24 2024-12-11 驱动开发 理解
SDK software development kits(软件开发包) 如Visual Studio 2019(v142)
WDK windows driver development kits(驱动开发包) 如WindowsKernelModeDriver10.0
设置他们的位置在属性-配置属性-常规-平台工具集,但实际上无需手动设置,因为新建什么项目时vs都帮你自动配置好了
准备工作 环境配置参考
创建Empty WDM Driver 项目,生成的Driver Files文件中的inf后缀文件 可以直接删除
在源文件中添加的必须是.c后缀的C语言文件。
项目配置中:
属性-C/C++中将警告视为错误选项设置为否
属性-链接器中将链接器警告视为错误设为否
由于使用的是windowsXP作为开发环境,所以要针对windowsXP进行项目配置,参考链接 :开发各平台驱动的设置参考
如果建立的是KMDF项目的话,除了上述步骤,还可以将属性-Inf2Cat中Run Inf2Cat选项设置为否
制作不同系统的驱动,要设置属性-Driver Settings-Target OS Version设置为对应操作系统
属性-Driver Settings-Target Platform设置为Desktop
驱动的开发流程:
编写代码->生成.sys文件->部署->启动->停止->卸载
驱动程序的测试最好在虚拟机中 测试,因为一出问题就蓝屏
DebugView 软件监视选项中要选上监视核心
驱动开发的调试:双机调试
1 2 3 4 5 bcdedit /set nointegritychecks on bcdedit /set testsigning on pause shutdown -r -t 1000
无论是debug还是release版本的驱动都会带一个测试的签名,测试的签名 只在测试模式下有效.非测试模式下等于没有签名无法加载驱动.
虚拟机设置(防止待机过长屏幕自动关闭时虚拟机出现问题)
右键-显示设置-电源和随眠-屏幕定时关闭调成从不
设置双机调试步骤 虚拟机设置中添加串行端口
红色线虽然显示是串行端口2,但实际上由于当前只有一个串行端口,所以在虚拟机系统中设置的引导的调试端口应该是com1
然后如下,到操作系统中添加调试引导项
1 2 3 4 5 bcdedit /copy {current} /d "win10 x64 debug for windbg" pause
设置windbg连接哪个串口 两种方式,1.图形化操作(下面主要介绍的是这种方式) 2.快捷方式设置参数 -b -k com:pipe,port=\\.\pipe\管道名,resets=0,reconnect -y
windbg打开后,点击File-Kernel Debug,打开的窗口中选择COM,Port设置为虚拟机中给串行端口设置的命名管道名字,并且勾选Pipe(表示是命名管道)和Reconnect
设置符号 设置添加系统环境变量_NT_SYMBOL_PATH的值为: srv*c:\symbols*http://msdl.microsoft.com/download/symbols
强制加载符号命令: .reload /f 使用 lm可以看到已加载的符号信息
windbg调试蓝屏dump文件 windbg可用于查看蓝屏的dump文件,dump文件默认位置在 C:\\Windows\Minidump\中
在windbg中选择File-Open source file打开蓝屏的dump文件
分析命令: !analyze -v (该命令可以看到蓝屏的时候的调用栈) 查看堆栈命令: kv
往往是通过调用栈查看问题出在哪里
操作系统设置dump文件生成步骤 此电脑右键属性-高级系统设置-启动和故障恢复处的设置按钮,在该界面做如下修改
勾选 将事件写入系统日志
[写入调试信息] 设置为 核心内存转储
此处也可以设置转储文件的保存位置
补充
p.s.修复虚拟机花屏:vmtool重新安装,选择修改,去除SVGA驱动(核显驱动),然后重新在虚拟机中安装显卡驱动.
PDB(Program Debug Database) 什么是PDB文件?
PDB文件是在我们编译工程的时候产生的,它是和对应的模块(exe或dll)一起生成出来的。
每个模块编译的时候都可以生成自己的PDB文件。比如.exe/.dll/.sys等等。
PDB文件对应上了位置和函数名。
windbg如何找到PDB文件?
1 2 3 4 5 6 SRV*D:\Symbols\XP*http://msdl.microsoft.com/download/symbols ;上面可以在后面添加;继续添加本地地址,比如SRV*D:\Symbols\XP*http://msdl.microsoft.com/download/symbols;D:\Symbols ;D:\Symbols\XP是本地路径, ;http://msdl.microsoft.com/download/symbols是网络路径 kd>.reload ;让windbg重新加载PDB
MSB8040错误
1 error MSB8040: 此项目需要缓解了 Spectre 漏洞的库。
在属性-常规-输出目录-宏中搜索14:
确定需要的是14.29版本
Visual Studio Installer的单个组件中搜索14.29,将黄标全部勾选,点击修改。问题解决!
第一个驱动程序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 #include <ntddk.h> VOID DriverUnload (PDRIVER_OBJECT driver) { DbgPrint("停止运行了\n" ); } NTSTATUS DriverEntry (PDRIVER_OBJECT pdriver, PUNICODE_STRING pReg) { DbgPrint("hello world!\n" ); DbgPrint("pdriver:%wZ\r\n" ,pReg); DbgPrint("pReg:%X\r\n" ,pdriver); pdriver->DriverUnload = DriverUnload; return STATUS_SUCCESS; }
windbg中可以使用dt命令查看对应数据结构的数据
头文件
#include <ntddk.h> winXP驱动开发用此头文件
#include <ntifs.h> wdk开发
头文件Wdm.h、Ntddk.h 和 Ntifs.h 的组织结构 在 Windows Vista 版本的 WDK 之前,用于驱动程序开发的主要头文件为 Wdm.h、Ntddk.h 和 Ntifs.h,它们包含很多重复声明。
从 Windows Vista 版本的 WDK 开始,Wdm.h、Ntddk.h 和 Ntifs.h 将按层次结构来组织并且不包含重复信息。上层的文件将包含下层的文件。每个函数和结构声明仅出现一次。
Ntifs.h 包含 Ntddk.h,而 Ntddk.h 又包含 Wdm.h。
内核编程基础 内核API的使用
在应用层编程我们可以使用WINDOWS提供的各种API函数,只要导入头文件<windows.h>就可以了,但是在内核编程的时候,我们不能像Ring3那样直接使用。微软为内核提供了专门的API,只要在程序中包含相应的头文件就可以使用了,如:#include<ntddk.h>(假设你已经正确安装了WDK)
在应用层编程的时候,我们通过MSDN来了解函数的详细信息,在内核编程的时候,要使用WDK自己的帮助文档。
未导出函数的使用 内核函数有三种
有一些是文档有写,也导出了的函数
有一些是文档没写,但导出了的函数
还有一些是文档没写,也没导出的函数,通过自己特征码定位CALL的位置,手动调用
WDK说明文档只包含了内核模块导出的函数,对于未导出的函数,则不能直接使用
如果要使用未导出的函数,只要自己定义一个函数指针,并且为函数指针提供正确的函数地址就可以使用了。有两种办法都可以获取为导出的函数地址:
特征码搜索
解析内核PDB文件
基本数据类型 在内核编程的时候,强烈建议大家遵守WDK的编码习惯,不要这么写:unsigned long length;
习惯使用WDK自己的类型:
WDK的类型
含义
ULONG
unsigned long
PULONG
unsigned long*
UCHAR
unsigned char
PUCHAR
unsigned char*
UINT
unsigned int
PUNIT
unsigned int*
VOID
void
PVOID
void*
返回值 大部分内核函数的返回值都是NTSTATUS类型,如:
1 2 3 NTSTATUS PsCreateSystemThread () ; NTSTATUS ZwOpenProcess () ; NTSTATUS ZwOpenEvent () ;
这个值能说明函数执行的结果,比如:
返回宏
代表数值
含义
STATUS_SUCCESS
0x00000000
成功
STATUS_INVALID_PARAMETER
0xC000000D
参数无效(这个错误出现往往代表出现了很多错误,因此不代表任何意义)
STATUS_BUFFER_OVERFLOW
0x80000005
缓冲区长度不够
STATUS_PENDING
不能算作一个错误,只是文件传输请求未决(异步)
STATUS_INSUFFICIENT_RESOURCES
资源调用错误
当你调用的内核函数,如果返回的结果不是STATUS_SUCCESS,就说明函数执行中遇到了问题,具体是什么问题,可以在ntstatus.h文件中查看。
内核函数中的异常处理 意义不大,该蓝屏还是蓝屏
在内核中,一个小小的错误就可能导致蓝屏,比如:读写一个无效的内存地址。为了让自己的内核程序更加健壮,强烈建议大家在编写内核程序时,使用异常处。
Windows提供了机构化异常处理机制,一般的编译器都是支持的,如下:
1 2 3 4 5 6 __try{ } __except(filter_value){ }
出现异常时,可根据filter_value的值来决定程序该如何执行,当filter_value的值为:
filter_value
含义
EXCEPTION_EXECUTE_HANDLER(1)
代码进入except块
EXCEPTION_CONTINUE_SEARCH(0)
不处理异常,由上一层调用函数处理
EXCEPTION_CONTINUE_EXECUTION(-1)
回去继续执行错误处的代码(基本用不到)
常用的内核内存函数 对内核的使用,主要就是:申请,设置,拷贝以及释放。
C语言
内核中
malloc
ExAllocatePool
memset(内核可用)
RtlFillMemory
memcpy(内核可用)(非重叠复制)
RtlCopyMemory(非重叠复制)
memmove(内核可用)(重叠复制)
RtlMoveMemory(重叠复制)
free
ExFreePool
ExAllocatePool已被淘汰,取而代之的是ExAllocatePoolWithTag
后又在 Windows 10 版本 2004 中被弃用,并已被ExAllocatePool2 取代
内核字符串种类
CHAR(char)
WCHAR(wchar_t)
ANSI_STRING
UNICODE_STRING
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 typedef struct _STRING { USHORT Length; USHORT MaximumLength; PCHAR Buffer; }STRING; typedef struct _UNICODE_STRING { USHORT Length; USHORT MaximumLength; PWCHAR Buffer; }UNICODE_STRING; UNICODE_STRING abc=RTL_CONSTANT_STRING(L"Hello World!" ); DbgPrint("%wZ" ,&abc);
内核中字符串尽量用ANSI_STRING字符串和UNICODE_STRING字符串,通过这种方法能避免使用0结尾,读字符串的时候读Length个字符就可以了,防止访问0蓝屏。
内核字符串常用函数
ANSI_STRING字符串
UNICODE_STRING字符串
含义
RtlInitAnsiString
RtlInitUnicodeString
创建字符串
RtlCopyString
RtlCopyUnicodeString
复制字符串
RtlCpmpareString
RtlCpmpareUnicodeString
比较字符串
RtlAnsiStringToUnicodeString
RtlUnicodeStringToAnsiString
字符串转换
RtlAppendStringToString
RtlAppendUnicodeToString/RtlAppendUnicodeStringToString
字符串拼接
RtlFreeAnsiString
RtlFreeUnicodeString
销毁字符串
RtlUpperString
RtlUpcaseUnicodeString
转换成大写
RtlEqualString
RtlEqualUnicodeString
字符串是否相等
DbgPrint,KdPrint打印字符串:
符号
格式说明符
类型
%c, %lc
ANSI字符
char
%C, %wc
宽字符
wchar_t
%d, %i
十进制有符号整数
int
%D
十进制_int64
_int64
%L
十六进制的LARGE_INTEGER
LARGE_INTEGER
%s, %ls
NULL终止的ANSI字符串
char*
%S, %ws
NULL终止的宽字符串
wchar_t*
%Z
ANSI_STRING字符串
%wZ
UNICODE_STRING字符串
%u
十进制的ULONG
ULONG
%x
小写字符十六进制的ULONG
ULONG
%X
大写字符十六进制的ULONG
ULONG
%p
指针Pointer 32/64位
根据DDK上说明,Unicode格式(%C, %S, %lc, %ls, %wc, %ws, and %wZ)只能在 IRQL = PASSIVE_LEVEL时才能使用.
常用的其他内核API函数
函数
含义
ExAcquireFastMutex
获取一个快速互斥体,用于多线程环境下的同步
ExReleaseFastMutex
快速释放一个互斥体
ExRaiseStatus
抛出一个异常,带有一个status值的,代码很深的地方直接报错
ZwCreateFile
创建文件
ZwWriteFile
写入文件
ZwReadFile
读取文件
ZwQueryDirctory
查询目录文件
ZwDeviceIoControlFile
创建设备io文件
ZwCreateKey
创建注册表的键
ZwQueryValueKey
创建注册表的键值
IoCreateFile
创建文件,比ZwCreateFile更加底层
IoCreateDevice
创建设备
IoCallDriver
发送一个请求,实际上这个函数可能是由IofCallDriver别名
IoCompleteRequest
完成请求
IoCopyCurrentIrpStackLocationToNext
将当前IRP请求的栈空间拷贝到下一个栈空间
IoSkipCurrentIrpStackLocationToNext
跳过当前IRP栈空间
IoGetCurrentIrpStackLocation
获得当前IRP栈空间指针
IRQL中断请求级别 处理器在一个IRQL上执行线程代码。IRQL是帮助决定线程如何被中断的。在同一处理器上,线程只能被更高级别IRQL的线程能中断 。每个处理器都有自己的中断IRQL。我们经常遇见的有四种IRQL级别。“Passive”, “APC”, “Dispatch” and “DIRQL”.
“DriverEntry”将会在PASSIVE_LEVEL被调用。
PASSIVE_LEVEL 无中断
IRQL最低级别,没有被屏蔽的中断,在这个级别上,线程执行用户模式,可以访问分页内存。DriverEntry、DriverUnload、DispatchRead…等分发函数都处于这个级别,我们创建的线程也是这个级别
APC_LEVEL 软中断
在这个级别上,只有APC级别的中断被屏蔽,可以访问分页内存。当有APC发生时,处理器提升到APC级别,这样,就屏蔽掉其它APC,为了和APC执行 一些同步,驱动程序可以手动提升到这个级别。比如,如果提升到这个级别,APC就不能调用。在这个级别,APC被禁止了,导致禁止一些I/O完成APC, 所以有一些API不能调用。
阻止响应任何APC,而且线程不能被挂起(suspend),为什么不能被挂起?因为操作系统实现线程挂起的方式,就是递交 APC
DISPATCH_LEVEL 软中断
这个级别,DPC(延迟过程) 和更低的中断被屏蔽,不能访问分页内存,所有的被访问的内存不能分页。因为只能处理分页内存,所以在这个级别,能够访问的Api大大减少。
DIRQL (Device IRQL) 硬中断
通常处于高层次的驱动程序不会使用这个IRQL等级,在这个等级上所有的中断都会被忽略。这是IRQL的最高等级。通常使用这个来判断设备的优先级。 一般的,更高级的驱动在这个级别上不处理IRQL,但是几乎所有的中断被屏蔽,这实际上是IRQL的一个范围,这是一个决定某个驱动有更高的优先级的方法。
驱动内核框架 Windows的驱动开发模型变迁
vxd(windows98)
kdm(windows98~windows2000)
wdm(再之后)
wdf(进一步原有基础上封装了一套更简单的API,现在)
内核编程的主要调用源:
入口函数 DriverEntry 和 卸载函数 DriverUnload(单线程环境)
各种分发函数(多线程环境,可以和DriverUnload并发,无法和DriverEntry并发)
处理请求时设置的完成函数(多线程环境)
其他回调函数 ndis(网络相关)(多线程环境)
函数的多线程安全性
可能运行于多线程环境的函数,必须是多线程安全的,只运行于单线程环境的函数,则不需要多线程安全性
如果函数A的所有调用源只运行于同一单线程环境,则函数A也是只运行在单线程环境下。
如果函数A的其中一个调用源是可能运行在多线程环境下的,或者多个调用源可能运行于不同的可并发的多线程环境,而且调用路径上没有采取多线程序列化成单线程的强制措施,则函数A也是可能运行在多线程环境的。
如果函数A所有可能运行于多线程环境的调用路径上,都有多线程序列化成单线程的强制措施,则函数A是运行于单线程环境的。
只使用函数内部资源的,完全不使用全局变量,静态变量或其他全局性资源的函数是多线程安全的。
如果对某个全局变量或者静态变量的所有访问都被强制的同步手段限制为同一时刻只有一个线程访问,则即使使用了这些全局变量或静态变量,对函数的多线程安全性也是没有影响的。
调用源
运行环境
原因
DriverEntry/DriverUnload
单线程
这两个函数由系统集成的单一线程调用。不会出现多线程同时调用的情况
各种分发函数
多线程
没有任何文档保证分发函数是不会被多线程同时调用的。此外,分发函数是不会和DriverEntry并发,但可能和DriverUnload并发
完成函数
多线程
完成函数随时可能被未知的线程调用
各种NDIS回调函数
多线程
同上
代码的中断级 win32编程是没有中断级这个概念的,但是在内核编程中是有中断级的概念的,我们的程序好像是并发的,但其实是有优先级的,就是中断级
规则:
如果在调用路径上没有特殊情况(导致中断级的提高或降低),则一个函数执行时的中断和它的调用源的中断级相同
如果在调用路径上有获取自旋锁,则中断级随之升高;如果调用路径上有释放自旋锁,则中断级随之下降。
调用源
一般运行中断级
DriverUnload/DriverEntry
Passive级
各种分发函数
Passive级
完成函数
Dispatch级
各种NDIS回调函数
Dispatch级
WDK中出现的特殊代码 IN和OUT
空定义,只是作为提示函数中参数时输入还是输出的
有时,驱动程序的某些部分必须驻留内存而另一些可以被分页,这就需要一种能控制代码和数据是否分页的方法。通过指导编译器的段分配可以实现这个目的。
#pragma alloc_text:把驱动程序的单独例程放到特定段中。
使编译器把代码放到特定段的传统方法是使用alloc_text编译指示。但不是每种编译器都支持这个编译指示
1 2 3 4 #pragma alloc_text(PAGE, a) #pragma alloc_text(PAGE, b)
#pragma alloc_text使用注意
该编译指示必须跟在函数声明后面而不能在前面。你可以把驱动程序中的所有函数集中到一个头文件中,并在包含该头文件的源文件中,在#include语句的后面使用alloc_text。
该编译指示仅能用于有C连接形式的函数。即,它不能用于类成员函数或 C++源文件中未用extern “C”声明的函数。
1 #pragma alloc_text(INIT,DriverEntry)
内核空间与内核模块 内核空间
内核空间中的地址在各个进程中都是一样的。
内核模块定义全局变量:可在不同进程中查看
windbg进入对应进程的进程空间 :
1 2 3 kd>!process 0 0 kd>.process XXXXXXXX (上面获取到的地址)
内核模块
硬件种类繁多,不可能做一个兼容所有硬件的内核,所以,微软提供规定的接口格式,让硬件驱动人员按照规定的格式编写“驱动程序”。
这些驱动程序每一个都是一个模块,称为“内核模块”,都可以加载到内核中,都遵守[[PE]]结构 。本质上讲,任意一个.sys文件与内核文件没有区别。
DRIVER_OBJECT结构体 定义在wdm.h中。
每个内核模块都有一个对应的结构体,来描述这个模块在内核中的各种信息:位置、大小、名称等等。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 kd> dt _DRIVER_OBJECT nt!_DRIVER_OBJECT +0x000 Type : Int2B +0x002 Size : Int2B +0x004 DeviceObject : Ptr32 _DEVICE_OBJECT +0x008 Flags : Uint4B +0x00c DriverStart : Ptr32 Void +0x010 DriverSize : Uint4B +0x014 DriverSection : Ptr32 Void +0x018 DriverExtension : Ptr32 _DRIVER_EXTENSION +0x01c DriverName : _UNICODE_STRING +0x024 HardwareDatabase : Ptr32 _UNICODE_STRING +0x028 FastIoDispatch : Ptr32 _FAST_IO_DISPATCH +0x02c DriverInit : Ptr32 long +0x030 DriverStartIo : Ptr32 void +0x034 DriverUnload : Ptr32 void +0x038 MajorFunction : [28 ] Ptr32 long ntdll!_DRIVER_EXTENSION +0x000 DriverObject : Ptr32 _DRIVER_OBJECT +0x004 AddDevice : Ptr32 long +0x008 Count : Uint4B +0x00c ServiceKeyName : _UNICODE_STRING +0x014 ClientDriverExtension : Ptr32 _IO_CLIENT_EXTENSION +0x018 FsFilterCallbacks : Ptr32 _FS_FILTER_CALLBACKS
Type,Flags,MajorFunction等等,因为他们是固有特征,尽可能隐藏特征,因为内核文件已经加载到内存里了,所以即使修改了,也不影响正常运行。
_LDR_DATA_TABLE_ENTRY结构体 完整版定义见WRK的_KLDR_DATA_TABLE_ENTRY
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 kd> dt _LDR_DATA_TABLE_ENTRY nt!_LDR_DATA_TABLE_ENTRY +0x000 InLoadOrderLinks : _LIST_ENTRY +0x008 InMemoryOrderLinks : _LIST_ENTRY +0x010 InInitializationOrderLinks : _LIST_ENTRY +0x018 DllBase : Ptr32 Void +0x01c EntryPoint : Ptr32 Void +0x020 SizeOfImage : Uint4B +0x024 FullDllName : _UNICODE_STRING +0x02c BaseDllName : _UNICODE_STRING +0x034 Flags : Uint4B +0x038 LoadCount : Uint2B +0x03a TlsIndex : Uint2B +0x03c HashLinks : _LIST_ENTRY +0x03c SectionPointer : Ptr32 Void +0x040 CheckSum : Uint4B +0x044 TimeDateStamp : Uint4B +0x044 LoadedImports : Ptr32 Void +0x048 EntryPointActivationContext : Ptr32 Void +0x04c PatchInformation : Ptr32 Void #ifdef _WIN64 typedef struct _KLDR_DATA_TABLE_ENTRY { LIST_ENTRY listEntry; ULONG64 __Undefined1; ULONG64 __Undefined2; ULONG64 __Undefined3; ULONG64 NonPagedDebugInfo; ULONG64 DllBase; ULONG64 EntryPoint; ULONG SizeOfImage; UNICODE_STRING path; UNICODE_STRING name; ULONG Flags; USHORT LoadCount; USHORT __Undefined5; ULONG64 __Undefined6; ULONG CheckSum; ULONG __padding1; ULONG TimeDateStamp; ULONG __padding2; } KLDR_DATA_TABLE_ENTRY, *PKLDR_DATA_TABLE_ENTRY; #else typedef struct _KLDR_DATA_TABLE_ENTRY { LIST_ENTRY listEntry; ULONG unknown1; ULONG unknown2; ULONG unknown3; ULONG unknown4; ULONG unknown5; ULONG unknown6; ULONG unknown7; UNICODE_STRING path; UNICODE_STRING name; ULONG Flags; } KLDR_DATA_TABLE_ENTRY, *PKLDR_DATA_TABLE_ENTRY; #endif typedef struct _LDR_DATA_TABLE_ENTRY { LIST_ENTRY InLoadOrderLinks; LIST_ENTRY InMemoryOrderLinks; LIST_ENTRY InInitializationOrderLinks; PVOID DllBase; PVOID EntryPoint; ULONG SizeOfImage; UNICODE_STRING FullDllName; UNICODE_STRING BaseDllName; ULONG Flags; USHORT LoadCount; USHORT TlsIndex; union { LIST_ENTRY HashLinks; struct { PVOID SectionPointer; ULONG CheckSum; }; }; union { struct { ULONG TimeDateStamp; }; struct { PVOID LoadedImports; }; }; struct _ACTIVATION_CONTEXT * EntryPointActivationContext ; PVOID PatchInformation; } LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;
_DRIVER_OBJECT结构可以通过DriverSection找到记录所有内核模块简单信息的双向链表,但双向链表没法找回_DRIVER_OBJECT结构。因此即使是在双向链表中将目标驱动断链了,对于pchunter也依然能找到内核对象,原因是因为pchunter是通过特征码直接索引到_DRIVER_OBJECT结构来遍历所有内核模块,而非通过该双向链表
遍历内核模块并断链作业 驱动对象遍历,模块隐藏(断链)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 #include <ntddk.h> unsigned int OldDriverSection= 0 ;VOID DriverUnload (PDRIVER_OBJECT driver) { if (OldDriverSection != 0 ) { unsigned int DriverSectionAddr = (unsigned int )driver + 0x014 ; *(unsigned int *)DriverSectionAddr = OldDriverSection; unsigned int currentIndex = *(unsigned int *)DriverSectionAddr; unsigned int lastIndex = *(unsigned int *)(currentIndex + 0x4 ); *(unsigned int *)lastIndex = currentIndex; *(unsigned int *)(*(unsigned int *)(currentIndex)+0x4 ) = currentIndex; } DbgPrint("停止运行了\n" ); } VOID forEachDriverChain (PDRIVER_OBJECT pdriver) { unsigned int DriverSection = (unsigned int )pdriver + 0x014 ; unsigned int beginIndex = *(unsigned int *)DriverSection; unsigned int currentIndex = beginIndex; DbgPrint("----------------------------------------\r\n" ); do { PUNICODE_STRING BaseDllName = (PUNICODE_STRING)(currentIndex + 0x02c ); DbgPrint("%wZ\r\n" , BaseDllName); currentIndex=*(unsigned int *)currentIndex; } while (currentIndex != beginIndex); DbgPrint("----------------------------------------\r\n" ); } VOID BreakDriverChain (PDRIVER_OBJECT pdriver) { unsigned int DriverSectionAddr = (unsigned int )pdriver + 0x014 ; unsigned int currentIndex = *(unsigned int *)DriverSectionAddr; unsigned int lastIndex = *(unsigned int *)(currentIndex +0x4 ); *(unsigned int *)lastIndex = *(unsigned int *)(currentIndex); *(unsigned int *)(*(unsigned int *)(currentIndex)+0x4 ) = lastIndex; OldDriverSection = *(unsigned int *)DriverSectionAddr; *(unsigned int *)DriverSectionAddr = lastIndex; } NTSTATUS DriverEntry (PDRIVER_OBJECT pdriver, PUNICODE_STRING pReg) { DbgPrint("hello world!\n" ); DbgPrint("pdriver:%wZ\r\n" ,pReg); DbgPrint("pReg:%p\r\n" ,pdriver); DbgPrint("hello world!\n" ); DbgPrint("===============断链前==============\n" ); forEachDriverChain(pdriver); BreakDriverChain(pdriver); DbgPrint("===============断链后==============\n" ); forEachDriverChain(pdriver); pdriver->DriverUnload = DriverUnload; return STATUS_SUCCESS; }
打印如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 hello world! pdriver:\REGISTRY\MACHINE\SYSTEM\ControlSet002\Services\HelloWorld pReg:81 DDCD18 hello world! ===============断链前============== ---------------------------------------- HelloWorld.sys (null) ntoskrnl.exe hal.dll kdcom.dll BOOTVID.dll ACPI.sys WMILIB.SYS pci.sys isapnp.sys compbatt.sys BATTC.SYS intelide.sys PCIIDEX.SYS MountMgr.sys ftdisk.sys dmload.sys dmio.sys PartMgr.sys vmci.sys VolSnap.sys vsock.sys atapi.sys disk.sys CLASSPNP.SYS fltMgr.sys sr.sys KSecDD.sys Ntfs.sys NDIS.sys Mup.sys agp440.sys i8042prt.sys kbdclass.sys vmmouse.sys mouclass.sys serial.sys serenum.sys imapi.sys cdrom.sys redbook.sys ks.sys vmx_svga.sys VIDEOPRT.SYS usbuhci.sys USBPORT.SYS vmxnet.sys es1371mp.sys portcls.sys drmk.sys usbehci.sys CmBatt.sys intelppm.sys fsvga.sys audstub.sys rasl2tp.sys ndistapi.sys ndiswan.sys raspppoe.sys raspptp.sys TDI.SYS psched.sys msgpc.sys ptilink.sys raspti.sys rdpdr.sys termdd.sys swenum.sys update.sys mssmbios.sys NDProxy.SYS usbhub.sys USBD.SYS gameenum.sys Fs_Rec.SYS Null.SYS Beep.SYS vga.sys mnmdd.SYS RDPCDD.sys Msfs.SYS Npfs.SYS rasacd.sys ipsec.sys tcpip.sys netbt.sys ws2ifsl.sys afd.sys netbios.sys vmhgfs.sys rdbss.sys mrxsmb.sys Fips.SYS ipnat.sys Cdfs.SYS wanarp.sys usbccgp.sys hidusb.sys HIDCLASS.SYS HIDPARSE.SYS BTHUSB.sys bthport.sys mouhid.sys vmusbmouse.sys dump_atapi.sys dump_WMILIB.SYS win32k.sys Dxapi.sys watchdog.sys dxg.sys dxgthk.sys vmx_fb.dll rfcomm.sys BthEnum.sys bthpan.sys ndisuio.sys wdmaud.sys sysaudio.sys mrxdav.sys vmmemctl.sys srv.sys HTTP.sys Dbgv.sys ---------------------------------------- ===============断链后============== ---------------------------------------- Dbgv.sys (null) ntoskrnl.exe hal.dll kdcom.dll BOOTVID.dll ACPI.sys WMILIB.SYS pci.sys isapnp.sys compbatt.sys BATTC.SYS intelide.sys PCIIDEX.SYS MountMgr.sys ftdisk.sys dmload.sys dmio.sys PartMgr.sys vmci.sys VolSnap.sys vsock.sys atapi.sys disk.sys CLASSPNP.SYS fltMgr.sys sr.sys KSecDD.sys Ntfs.sys NDIS.sys Mup.sys agp440.sys i8042prt.sys kbdclass.sys vmmouse.sys mouclass.sys serial.sys serenum.sys imapi.sys cdrom.sys redbook.sys ks.sys vmx_svga.sys VIDEOPRT.SYS usbuhci.sys USBPORT.SYS vmxnet.sys es1371mp.sys portcls.sys drmk.sys usbehci.sys CmBatt.sys intelppm.sys fsvga.sys audstub.sys rasl2tp.sys ndistapi.sys ndiswan.sys raspppoe.sys raspptp.sys TDI.SYS psched.sys msgpc.sys ptilink.sys raspti.sys rdpdr.sys termdd.sys swenum.sys update.sys mssmbios.sys NDProxy.SYS usbhub.sys USBD.SYS gameenum.sys Fs_Rec.SYS Null.SYS Beep.SYS vga.sys mnmdd.SYS RDPCDD.sys Msfs.SYS Npfs.SYS rasacd.sys ipsec.sys tcpip.sys netbt.sys ws2ifsl.sys afd.sys netbios.sys vmhgfs.sys rdbss.sys mrxsmb.sys Fips.SYS ipnat.sys Cdfs.SYS wanarp.sys usbccgp.sys hidusb.sys HIDCLASS.SYS HIDPARSE.SYS BTHUSB.sys bthport.sys mouhid.sys vmusbmouse.sys dump_atapi.sys dump_WMILIB.SYS win32k.sys Dxapi.sys watchdog.sys dxg.sys dxgthk.sys vmx_fb.dll rfcomm.sys BthEnum.sys bthpan.sys ndisuio.sys wdmaud.sys sysaudio.sys mrxdav.sys vmmemctl.sys srv.sys HTTP.sys ---------------------------------------- 停止运行了
由上面打印可知HelloWorld.sys成功被隐藏,但pchunter依然可以查找到我们的驱动
驱动模块断链会导致PG,蓝屏
驱动隐藏特征码抹除(pchunter无法找到)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 #include <ntddk.h> typedef struct _LDR_DATA_TABLE_ENTRY { LIST_ENTRY InLoadOrderLinks; LIST_ENTRY InMemoryOrderLinks; LIST_ENTRY InInitializationOrderLinks; PVOID DllBase; PVOID EntryPoint; ULONG SizeOfImage; UNICODE_STRING FullDllName; UNICODE_STRING BaseDllName; ULONG Flags; USHORT LoadCount; USHORT TlsIndex; union { LIST_ENTRY HashLinks; struct { PVOID SectionPointer; ULONG CheckSum; }; }; union { struct { ULONG TimeDateStamp; }; struct { PVOID LoadedImports; }; }; struct _ACTIVATION_CONTEXT * EntryPointActivationContext ; PVOID PatchInformation; } LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY; HANDLE hThread; VOID DriverUnload (PDRIVER_OBJECT pDriver) { KdPrint(("卸载的了" )); } VOID threadRun (_In_ PVOID StartContext) { KdPrint(("开始执行1\n" )); LARGE_INTEGER times; times.QuadPart = -30 * 1000 * 1000 ; KeDelayExecutionThread(KernelMode, FALSE, ×); PDRIVER_OBJECT pDriver = (PDRIVER_OBJECT)StartContext; pDriver->DriverSize = 0 ; pDriver->DriverSection = NULL ; pDriver->DriverExtension = NULL ; pDriver->DriverStart = NULL ; pDriver->DriverInit = NULL ; pDriver->FastIoDispatch = NULL ; pDriver->DriverStartIo = NULL ; ZwClose(hThread); KdPrint(("执行结束1\n" )); } NTSTATUS DriverEntry (PDRIVER_OBJECT pDriver, PUNICODE_STRING pReg) { KdPrint(("驱动被加载\n" )); PLDR_DATA_TABLE_ENTRY pList = (PLDR_DATA_TABLE_ENTRY)pDriver->DriverSection; PLDR_DATA_TABLE_ENTRY pCur = pList; pList = pList->InLoadOrderLinks.Flink; pList->InLoadOrderLinks.Blink = pCur->InLoadOrderLinks.Blink; pCur->InLoadOrderLinks.Flink = pList; pDriver->DriverUnload = DriverUnload; PsCreateSystemThread(&hThread, GENERIC_ALL, NULL , NULL , NULL , threadRun, pDriver); return STATUS_SUCCESS; }
上面代码可让pchunter也找不到驱动,但此代码只做了抹特征隐藏,却并未恢复特征或手动调用函数卸载驱动。停止驱动的时候会因为信息缺失直接蓝屏。需要一个时间点做恢复特征(不可以在DriverUnload中,因为是还没到该函数就蓝屏了)。
64位下不能直接断链(PG的原因)
避免断链蓝屏MiProcessLoaderEntry MiProcessLoaderEntry函数讲解跳转 ,第一个参数是当前链表,第二个参数false表示卸载,true表示插入。该函数模块从链表上移除了,但没有释放内存。
64位用这个函数不会触发PG,不会蓝屏。PG可以理解成就是保护全局变量不被直接修改。
MiProcessLoaderEntry方式断链代码参考跳转
KdPrint和DbgPrint的区别:
1 2 3 4 5 6 7 8 #if DBG #define KdPrint(_x_) DbgPrint _x_ #else #define KdPrint(_x_) KdPrint(("hello World!\n" )); DbgPrint("hello World!\n" );
驱动键鼠过滤 IoAttachDevice绑定设备
1 2 3 4 5 6 NTSTATUS IoAttachDevice ( IN PDEVICE_OBJECT SourceDevice, IN PUNICODE_STRING TargetDevice, OUT PDEVICE_OBJECT *AttachedDevice ) ;
使用:
1 2 UNICODE_STRING com_name = RLT_CONSTANT_STRING(L"\\Device\\Serial0" ); NTSTATUS status = IoAttachDevice(com_filter_device,&com_device_name,&attached_device);
驱动开发中的链表 常用函数
IsListEmpty 判断链表是否为空
InitializeListHead 初始化双向链表头
InsertHeadList 插入链表头部
InsertTailList 插入链表尾部
RemoveHeadList 移除头部节点
RemoveTailList 移除尾部节点
RemoveEntryList 移除当前节点
链表在驱动中需要处理同步,因为链表涉及到指针操作,一不小心就可能导致蓝屏.
因此驱动开发中数组可以不需要同步处理(多线程写入同一个位置一样可能有问题,但概率没那么大),但链表必须做同步处理
零环与三环通信(常规方式) 常规方式表示微软提供的正常通信方式,还有非常规通信。正常通信方式受到一定限制。
设备对象
我们在开发窗口程序的时候,消息被封装成一个结构体:MSG,在内核开发时,消息被封装成另外一个结构体:IRP (I/O Request Package输入输出请求包)
在窗口程序中,能够接受消息的只能是窗口对象。在内核中,能够接收IRP消息的只能是设备对象
驱动对象 (DRIVER_OBJECT)生成多个设备对象,
设备对象 (DEVICE_OBJECT)可以是硬件(硬盘等),也可以是软件,比如NTFS文件系统。它们都属于设备对象。
设备对象结构 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 typedef struct DECLSPEC_ALIGN (MEMORY_ALLOCATION_ALIGNMENT) _DEVICE_OBJECT{ CSHORT Type; USHORT Size; LONG ReferenceCount; struct _DRIVER_OBJECT *DriverObject ; struct _DEVICE_OBJECT *NextDevice ; struct _DEVICE_OBJECT *AttachedDevice ; struct _IRP *CurrentIrp ; PIO_TIMER Timer; ULONG Flags; ULONG Characteristics; _volatile PVPB Vpb; PVOID DeviceExtension; DEVICE_TYPE DeviceType; CCHAR StackSize; union { LIST_ENTRY ListEntry; WAIT_CONTEXT_BLOCK Wcb; } Queue; ULONG AlignmentRequirement; KDEVICE_QUEUE DeviceQueue; KDPC Dpc; ULONG ActiveThreadCount; PSECURITY_DESCRIPTOR SecurityDescriptor; KEVENT DeviceLock; USHORT SectorSize; USHORT Spare1; struct _DEVOBJ_EXTENSION *DeviceObjectExtension ; PVOID Reserved; } DEVICE_OBJECT; typedef struct _DEVICE_OBJECT *PDEVICE_OBJECT ;
IoCreateDevice 1 2 3 4 5 6 7 8 9 10 11 12 NTSTATUS IoCreateDevice ( PDRIVER_OBJECT DriverObject, ULONG DeviceExtensionSize, PUNICODE_STRING DeviceName, DEVICE_TYPE DeviceType, ULONG DeviceCharacteristics, BOOLEAN Exclusive, PDEVICE_OBJECT *DeviceObject ) ;NTSTATUS MyDispath (PDEVICE_OBJECT device,PIRP irp) ;
实例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 UNICODE_STRING Devicename; RtlInitUnicodeString(&Devicename,L"\\Device\\MyDevice" ); PDEVICE_OBJECT pDeviceObj = NULL ; status = IoCreateDevice( pDriver, 0 ,&Devicename, FILE_DEVICE_UNKNOWN, FILE_DEVICE_SECURE_OPEN, TRUE, &pDeviceObj ); if (!NT_SUCCESS(status)){ DbgPrint("创建设备失败!\n" ); return status; }
删除设备对象 1 IoDeleteDevice(pDeviceObj);
设置交互数据的方式 1 2 pDeviceObj->Flags |= DO_BUFFERED_IO;
**缓冲区方式读写(DO_BUFFERED_IO)**:操作系统将应用程序提供缓冲区的数据复制到内核模式下的地址中。(效率不高,适合小规模数据)
**直接方式读写(DO_DIRECT_IO)**:操作系统会将用户模式下的缓冲区锁住。然后操作系统将这段缓冲区在内核模式地址再次映射一遍。这样,用户模式的缓冲区和内核模式的缓冲区指向的是同一区域的物理内存。缺点就是要单独占用物理页面。(适合大规模数据,比较浪费物理页)
其他方式读写 (在调用IoCreateDevice创建设备后对pDevObj->Flags即不设置DO_BUFFERED_IO,也不设置DO_DIRECT_IO,此时就是其他方式):在使用其他方式读写设备时,派遣函数直接读写应用程序提供的缓冲区地址。在驱动程序中,直接操作应用程序的缓冲区地址是很危险的**(这种方法须要注意的是ReadFile可能把空指针地址或者非法地址传递给驱动程序,因此驱动程序使用用户模式地址前须要检查是否可读或者可写)。 只有驱动程序与应用程序运行在相同线程上下文的情况下,才能使用这种方式**。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 if (DeviceObject->Flags&DO_BUFFERED_IO) { KdPrint(("Flags:DO_BUFFER_IO\n" )); pBuffer=Irp->AssociatedIrp.SystemBuffer; } else if (DeviceObject->Flags&DO_DIRECT_IO) { KdPrint(("Flags:DO_DIRECT_IO\n" )); pBuffer=MmGetSystemAddressForMdl(Irp->MdlAddress); } else { KdPrint(("Flags:Neither\n" )); pBuffer=Irp->UserBuffer; }
创建与卸载符号链接 就是设置一个名字,让三环可以通过这个名字找到设备对象来操作他。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 UNICODE_STRING SymbolicLinkName; RtlInitUnicodeString(&SymbolicLinkName,L"\\??\\MyTestDriver" ); status = IoCreateSymbolicLink(&SymbolicLinkName,&Devicename); if (status!=STATUS_SUCCESS){ DbgPrint("创建符号链接失败!\n" ); IoDeleteDevice(pDeviceObj); return status; } IoDeleteSymbolicLink(&SymbolicLinkName);
特别说明:
设备名称的作用是给内核对象用的,如果要在Ring3访问,必须要有符号链接,其实就是一个别名,没有这个别名,在Ring3不可见
内核模式下,符号链接是以”??"开头的,如C盘就是”??\C:”
用户模式下,则是以”\\.\"开头的,如C盘就是”\\.\C:”
创建设备对象并设置符号链接
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 #define _LINK_NAME L"\\??\\MyDriver" NTSTATUS CreateDevice (PDRIVER_OBJECT driver) { NTSTATUS status; UNICODE_STRING MyDriver; PDEVICE_OBJECT device = NULL ; RtlInitUnicodeString(&MyDriver, L"\\DEVICE\\MyDriver" ); status = IoCreateDevice(driver, sizeof (driver->DriverExtension), &MyDriver, FILE_DEVICE_UNKNOWN, FILE_DEVICE_SECURE_OPEN, FALSE, &device ); if (status==STATUS_SUCCESS) { KdPrint(("zeroko14:kernel:驱动设备对象创建成功\n" )); UNICODE_STRING uzSymbolName; RtlInitUnicodeString(&uzSymbolName, _LINK_NAME); status = IoCreateSymbolicLink(&uzSymbolName, &MyDriver); if (status == STATUS_SUCCESS) { KdPrint(("zeroko14:kernel:创建符号链接%wZ成功\n" , &uzSymbolName)); } else { KdPrint(("zeroko14:kernel:创建符号链接%wZ失败 status:%X\n" , &uzSymbolName,status)); } } else { KdPrint(("zeroko14:kernel:驱动对象创建失败,删除设备\n" )); IoDeleteDevice(device); } }
IRP与派遣函数
驱动程序与I/O管理器通信,使用的是IRP,即I/O请求包 。
IRP类型
当应用层通过CreateFile,ReadFile,WriteFile,CloseHandle等函数打开,从设备读取数据,向设备写入数据,关闭设备的时候,会使操作系统分别产生出IRP_MJ_CREATE,IRP_MJ_READ,IRP_MJ_WRITE,IRP_MJ_CLOSE等不同的IRP。
其他类型的IRP
IRP类型
来源
IRP_MJ_DEVICE_CONTROL
DeviceIoControl函数会产生此IRP
IRP_MJ_POWER
在操作系统处理电源信息时,产生此IRP
IRP_MJ_SHUTDOWN
关闭系统前会产生此IRP
IRP_MJ_CREATE
生成请求 CreateFile
IRP_MJ_QUERY_INFORMATION
查询请求
IRP_MJ_CLOSE
关闭请求 CloseHandle
IRP_MJ_SET_INFORMATION
设置请求
IRP_MJ_READ
从设备得到数据 ReadFile
IRP_MJ_WRITE
传送数据到设备 WriteFile
还有很多。。。
。。。
IRP_MJ_DEVICE_CONTROL是我们用的最多的一种方式,比较灵活。可以拿到三环传过来的消息码,自己设定怎么处理(通过消息码确定)。
每个IRP都对应一个输入输出
IRP结构 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 typedef struct _IRP { PMDL MdlAddress; ULONG Flags; union { struct _IRP * MasterIrp ; PVOID SystemBuffer; } AssociatedIrp; IO_STATUS_BLOCK IoStatus; KPROCESSOR_MODE RequestorMode; BOOLEAN PendingReturned; BOOLEAN Cancel; KIRQL CancelIrql; PDRIVER_CANCEL CancelRoutine; PVOID UserBuffer; union { struct { union { KDEVICE_QUEUE_ENTRY DeviceQueueEntry; struct { PVOID DriverContext[4 ]; }; }; PETHREAD Thread; LIST_ENTRY ListEntry; } Overlay; } Tail; } IRP, *PIRP; kd> dt nt!_IRP +0x000 Type : Int2B +0x002 Size : Uint2B +0x004 MdlAddress : Ptr32 _MDL +0x008 Flags : Uint4B +0x00c AssociatedIrp : <unnamed-tag> +0x010 ThreadListEntry : _LIST_ENTRY +0x018 IoStatus : _IO_STATUS_BLOCK +0x020 RequestorMode : Char +0x021 PendingReturned : UChar +0x022 StackCount : Char +0x023 CurrentLocation : Char +0x024 Cancel : UChar +0x025 CancelIrql : UChar +0x026 ApcEnvironment : Char +0x027 AllocationFlags : UChar +0x028 UserIosb : Ptr32 _IO_STATUS_BLOCK +0x02c UserEvent : Ptr32 _KEVENT +0x030 Overlay : <unnamed-tag> +0x038 CancelRoutine : Ptr32 void +0x03c UserBuffer : Ptr32 Void +0x040 Tail : <unnamed-tag>
每个IRP对应一个IO_STACK_LOCATION结构,通过下面的函数可以获取到此IRP对应的IO_STACK_LOCATION结构
IoGetCurrentIrpStackLocation返回一个指向IO_STACK_LOCATION结构的指针,该结构包含驱动程序的 I/O 堆栈位置
上图为DeviceIoControl方式读写 ,如果是用ReadFile/WriteFile方式读写,应参考设置交互数据的方式
注意information设置不正确.案例中,仅传一个整形数据时候,设置到99,导致蓝屏(吃了大亏)
IO_STACK_LOCATION结构 派遣函数 派遣函数在哪里注册呢? 1 2 3 4 5 6 7 8 9 10 11 12 13 kd> dt _DRIVER_OBJECT nt!_DRIVER_OBJECT +0x000 Type : Int2B +0x002 Size : Int2B +0x004 DeviceObject : Ptr32 _DEVICE_OBJECT +0x008 Flags : Uint4B +0x00c DriverStart : Ptr32 Void +0x010 DriverSize : Uint4B .... +0x030 DriverStartIo : Ptr32 void +0x034 DriverUnload : Ptr32 void +0x038 MajorFunction : [28 ] Ptr32 long
0编号的IRP对应的派遣函数的地址就存在MajorFunction[0]的位置。
注册派遣函数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 NTSTATUS DriverEntry (PDRIVER_OBJECT pDriverObject, PUNICODE_STRING pReg) { pDriverObject->DriverUnload = 卸载函数; pDriverObject->MajorFunction[IRP_MJ_CREATE] = 派遣函数1 ; pDriverObject->MajorFunction[IRP_MJ_CLOSE] = 派遣函数2 ; pDriverObject->MajorFunction[IRP_MJ_WRITE] = 派遣函数3 ; pDriverObject->MajorFunction[IRP_MJ_READ] = 派遣函数4 ; pDriverObject->MajorFunction[IRP_MJ_CLEANUP] = 派遣函数5 ; pDriverObject->MajorFunction[IRP_MJ_SET_INFORMATION] = 派遣函数6 ; pDriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = 派遣函数7 ; pDriverObject->MajorFunction[IRP_MJ_SHUTDOWN] = 派遣函数8 ; pDriverObject->MajorFunction[IRP_MJ_SYSTEM_CONTROL] = 派遣函数9 ; }
IRP_MJ_MAXIMUM_FUNCTION 派遣函数的最大值宏
派遣函数的格式 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 NTSTATUS MyDispatchFunction (PDEVICE_OBJECT pDevObj, PIRP pIrp) { pIrp->IoStatus.Status = STATUS_SUCCESS; pIrp->IoStatus.Information = 0 ; IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; } NTSTATUS DeviceIrpCtl (PDEVICE_OBJECT pDevObj, PIRP pIrp) { PIO_STACK_LOCATION irpStackL; ULONG CtlCode; ULONG InputBuffLength; irpStackL=IoGetCurrentIrpStackLocation(pIrp); switch (irpStackL->MajorFunction) { case IRP_MJ_DEVICE_CONTROL: DbgPrint("用户调用了DeviceIoControl!\n" ); break ; case IRP_MJ_CREATE: DbgPrint("用户调用了CreateFile!\n" ); break ; case IRP_MJ_CLOSE; DbgPrint("用户调用了CloseHandle!\n" ); break ; } pIrp->IoStatus.Status = STATUS_SUCCESS; pIrp->IoStatus.Information = 4 ; IoCompleteRequest(pIrp,IO_NO_INCREMENT); return STATUS_SUCCESS; }
IRP结构详解
IRP_MJ_DEVICE_CONTROL的派遣函数 CTL操作码 IRP_MJ_DEVICE_CONTROL用到的操作码是个复合数据,微软提供了一个宏CTL_CODE 来组合这个复合数据,如下定义方式:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 #define CTL_CODE( DeviceType, Function, Method, Access ) ( \ ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \ ) void CTL_CODE ( DeviceType, Function, Method, Access ) ;#define CODE_READ CTL_CODE(FILE_DEVICE_UNKNOWN,0x800,METHOD_BUFFERED,FILE_ANY_ACCESS) #define CODE_WRITE CTL_CODE(FILE_DEVICE_UNKNOWN,0x900,METHOD_BUFFERED,FILE_ANY_ACCESS)
IRP_MJ_DEVICE_CONTROL的派遣函数编写 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 NTSTATUS ControlCallBack (PDEVICE_OBJECT pDevObj, PIRP pIrp) { PIO_STACK_LOCATION psl = IoGetCurrentIrpStackLocation(pIrp); ULONG code = psl->Parameters.DeviceIoControl.IoControlCode; PVOID systemBuf = pIrp->AssociatedIrp.SystemBuffer; ULONG inLen = psl->Parameters.DeviceIoControl.InputBufferLength; ULONG outLen = psl->Parameters.DeviceIoControl.OutputBufferLength; switch (code) { case CODE_READ: break ; case CODE_WRITE: break ; } IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; }
三环写法 DeviceIoControl 函数结构
1 2 3 4 5 6 7 8 9 10 BOOL DeviceIoControl ( HANDLE hDevice, DWORD dwIoControlCode, LPVOID lpInBuffer, DWORD nInBufferSize, LPVOID lpOutBuffer, DWORD nOutBufferSize, LPDWORD lpBytesReturned, LPOVERLAPPED lpOverlapped ) ;
内核通信,需要头文件#include <WinIoCtl.h>
并且WinIoCtl.h必须定义到Windows.h的后面
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 #define CODE_READ CTL_CODE(FILE_DEVICE_UNKNOWN,0x800,METHOD_BUFFERED,FILE_ANY_ACCESS) #define CODE_WRITE CTL_CODE(FILE_DEVICE_UNKNOWN,0x900,METHOD_BUFFERED,FILE_ANY_ACCESS) BOOLEAN openDevice (HANDLE *handle) { HANDLE _handle = CreateFileA("\\\\.\\MyTestDriver" ,GENERIC_READ|GENERIC_WRITE,0 ,NULL ,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,NULL ); *handle=_handle; return (int )_handle>0 ; } CloseHandle(handle); BOOLEAN sendCode (HANDLE hDevice,DWORD code,PVOID inData,ULONG Inlen,PVOID outData,ULONG outLen,LPDWORD resultLen) { return DeviceIoControl(hDevice,code,inData,Inlen,outData,outLen,resultLen,NULL ); }
0-3环常规通信框架:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 #include <ntddk.h> #define CODE_CHANGE CTL_CODE(FILE_DEVICE_UNKNOWN,0x800,METHOD_BUFFERED,FILE_ANY_ACCESS) #define CODE_RESUME CTL_CODE(FILE_DEVICE_UNKNOWN,0x900,METHOD_BUFFERED,FILE_ANY_ACCESS) #define CODE_READ CTL_CODE(FILE_DEVICE_UNKNOWN,0x1000,METHOD_BUFFERED,FILE_ANY_ACCESS) UNICODE_STRING SymbolicLinkName; VOID DriverUnload (PDRIVER_OBJECT driver) { DbgPrint("停止运行了\n" ); } NTSTATUS MyCreateDispatchFunction (PDEVICE_OBJECT pDevObj, PIRP pIrp) { DbgPrint("三环连接成功\n" ); pIrp->IoStatus.Status = STATUS_SUCCESS; pIrp->IoStatus.Information = 0 ; IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; } NTSTATUS MyCloseDispatchFunction (PDEVICE_OBJECT pDevObj, PIRP pIrp) { DbgPrint("三环断开连接成功\n" ); pIrp->IoStatus.Status = STATUS_SUCCESS; pIrp->IoStatus.Information = 0 ; IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; } ULONG current = 0 ; NTSTATUS ControlCallBack (PDEVICE_OBJECT pDevObj, PIRP pIrp) { PIO_STACK_LOCATION psl = IoGetCurrentIrpStackLocation(pIrp); ULONG code = psl->Parameters.DeviceIoControl.IoControlCode; PVOID systemBuf = pIrp->AssociatedIrp.SystemBuffer; ULONG inLen = psl->Parameters.DeviceIoControl.InputBufferLength; ULONG outLen = psl->Parameters.DeviceIoControl.OutputBufferLength; switch (code) { case CODE_CHANGE: break ; case CODE_RESUME: break ; case CODE_READ: break ; } IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; } NTSTATUS DriverEntry (PDRIVER_OBJECT pdriver, PUNICODE_STRING pReg) { pdriver->DriverUnload = DriverUnload; UNICODE_STRING Devicename; RtlInitUnicodeString(&Devicename, L"\\Device\\MyDevice" ); PDEVICE_OBJECT pDeviceObj = NULL ; NTSTATUS status = IoCreateDevice(pdriver,0 ,&Devicename,FILE_DEVICE_UNKNOWN,FILE_DEVICE_SECURE_OPEN,TRUE,&pDeviceObj ); if (!NT_SUCCESS(status)) { DbgPrint("创建设备失败!\n" ); return status; } pDeviceObj->Flags |= DO_BUFFERED_IO; RtlInitUnicodeString(&SymbolicLinkName, L"\\??\\MyTestDriver" ); status = IoCreateSymbolicLink(&SymbolicLinkName, &Devicename); if (!NT_SUCCESS(status)) { DbgPrint("创建符号链接失败!\n" ); IoDeleteDevice(pDeviceObj); return status; } pdriver->MajorFunction[IRP_MJ_CREATE] = MyCreateDispatchFunction; pdriver->MajorFunction[IRP_MJ_CLOSE] = MyCloseDispatchFunction; pdriver->MajorFunction[IRP_MJ_DEVICE_CONTROL] = ControlCallBack; return STATUS_SUCCESS; }
IRP_MJ_DEVICE_CONTROL交互数据实验 R0代码: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 #include <ntddk.h> #define CODE_READ CTL_CODE(FILE_DEVICE_UNKNOWN,0x800,METHOD_BUFFERED,FILE_ANY_ACCESS) #define CODE_WRITE CTL_CODE(FILE_DEVICE_UNKNOWN,0x900,METHOD_BUFFERED,FILE_ANY_ACCESS) UNICODE_STRING SymbolicLinkName; VOID DriverUnload (PDRIVER_OBJECT driver) { if (driver->DeviceObject) { IoDeleteDevice(driver->DeviceObject); } if (SymbolicLinkName.Length>0 ) { IoDeleteSymbolicLink(&SymbolicLinkName); } DbgPrint("停止运行了\n" ); } NTSTATUS MyCreateDispatchFunction (PDEVICE_OBJECT pDevObj, PIRP pIrp) { DbgPrint("三环连接成功\n" ); pIrp->IoStatus.Status = STATUS_SUCCESS; pIrp->IoStatus.Information = 0 ; IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; } NTSTATUS MyCloseDispatchFunction (PDEVICE_OBJECT pDevObj, PIRP pIrp) { DbgPrint("三环断开连接成功\n" ); pIrp->IoStatus.Status = STATUS_SUCCESS; pIrp->IoStatus.Information = 0 ; IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; } NTSTATUS ControlCallBack (PDEVICE_OBJECT pDevObj, PIRP pIrp) { PIO_STACK_LOCATION psl = IoGetCurrentIrpStackLocation(pIrp); ULONG code = psl->Parameters.DeviceIoControl.IoControlCode; PVOID systemBuf = pIrp->AssociatedIrp.SystemBuffer; ULONG inLen = psl->Parameters.DeviceIoControl.InputBufferLength; ULONG outLen = psl->Parameters.DeviceIoControl.OutputBufferLength; switch (code) { case CODE_READ: memcpy (systemBuf, "1234567" , sizeof ("1234567" )); pIrp->IoStatus.Information = sizeof ("1234567" ); break ; case CODE_WRITE: DbgPrint("派遣函数:三环传入的信息:%s\n" ,systemBuf); break ; } IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; } NTSTATUS DriverEntry (PDRIVER_OBJECT pdriver, PUNICODE_STRING pReg) { pdriver->DriverUnload = DriverUnload; UNICODE_STRING Devicename; RtlInitUnicodeString(&Devicename, L"\\Device\\MyDevice" ); PDEVICE_OBJECT pDeviceObj = NULL ; NTSTATUS status = IoCreateDevice(pdriver,0 ,&Devicename,FILE_DEVICE_UNKNOWN,FILE_DEVICE_SECURE_OPEN,TRUE,&pDeviceObj ); if (!NT_SUCCESS(status)) { DbgPrint("创建设备失败!\n" ); return status; } pDeviceObj->Flags |= DO_BUFFERED_IO; RtlInitUnicodeString(&SymbolicLinkName, L"\\??\\MyTestDriver" ); status = IoCreateSymbolicLink(&SymbolicLinkName, &Devicename); if (!NT_SUCCESS(status)) { DbgPrint("创建符号链接失败!\n" ); IoDeleteDevice(pDeviceObj); return status; } pdriver->MajorFunction[IRP_MJ_CREATE] = MyCreateDispatchFunction; pdriver->MajorFunction[IRP_MJ_CLOSE] = MyCloseDispatchFunction; pdriver->MajorFunction[IRP_MJ_DEVICE_CONTROL] = ControlCallBack; return STATUS_SUCCESS; }
R3代码: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 #include "stdafx.h" #include <stdio.h> #include <stdlib.h> #include <Windows.h> #include <WinIoCtl.h> #define CODE_READ CTL_CODE(FILE_DEVICE_UNKNOWN,0x800,METHOD_BUFFERED,FILE_ANY_ACCESS) #define CODE_WRITE CTL_CODE(FILE_DEVICE_UNKNOWN,0x900,METHOD_BUFFERED,FILE_ANY_ACCESS) BOOLEAN openDevice (HANDLE *handle) { HANDLE _handle = CreateFileA("\\\\.\\MyTestDriver" , GENERIC_READ | GENERIC_WRITE, 0 , NULL , OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL ); *handle = _handle; return (int )_handle > 0 ; } BOOLEAN sendCode (HANDLE hDevice, DWORD code, PVOID inData, ULONG Inlen, PVOID outData, ULONG outLen, LPDWORD resultLen) { return DeviceIoControl(hDevice, code, inData, Inlen, outData, outLen, resultLen, NULL ); } void main () { HANDLE hDevice; char buf[30 ] = { 0 }; DWORD realReaded = 0 ; if (!openDevice(&hDevice)) { printf ("打开设备对象失败!\r\n" ); return ; } memcpy (buf,"i am R3" ,sizeof ("i am R3" )); sendCode(hDevice, CODE_WRITE, buf, 30 , NULL , 0 , &realReaded); printf ("读到:%s\r\n" , buf); CloseHandle(hDevice); system("pause" ); }
写数据结果如图:
将写数据给R0代码注释,放开读R0数据的代码,结果如图:
驱动加载 需要头文件 #include <winsvc.h>
加载驱动过程
用OpenSCManager打开服务控制管理器
用CreateService创建对应服务
如果驱动服务已经创建过,则用OpenService打开服务
用StartService加载启动驱动服务
用QueryServiceStatus获得服务的当前状态
用ControlService停止,暂停,恢复服务
用DeleteService卸载驱动
清理工作,用CloseServiceHandle关闭释放句柄
驱动注册/安装 1 2 3 4 5 6 7 8 SC_HANDLE OpenSCManagerA ( LPCSTR lpMachineName, LPCSTR lpDatabaseName, DWORD dwDesiredAccess ) ;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 SC_HANDLE CreateServiceA ( SC_HANDLE hSCManager, LPCSTR lpServiceName, LPCSTR lpDisplayName, DWORD dwDesiredAccess, DWORD dwServiceType, DWORD dwStartType, DWORD dwErrorControl, LPCSTR lpBinaryPathName, LPCSTR lpLoadOrderGroup, LPDWORD lpdwTagId, LPCSTR lpDependencies, LPCSTR lpServiceStartName, LPCSTR lpPassword ) ;
CreateServiceA函数执行后,GetLastError()如果为ERROR_SERVICE_EXISTS,则调用OpenService
关闭服务句柄
1 2 CloseServiceHandle(serviceHandle);
驱动启动 1 2 3 4 5 SC_HANDLE OpenServiceA ( SC_HANDLE hSCManager, LPCSTR lpServiceName, DWORD dwDesiredAccess ) ;
1 2 3 4 5 6 7 8 BOOL StartServiceA ( SC_HANDLE hService, DWORD dwNumServiceArgs, LPCSTR *lpServiceArgVectors ) ;
停止驱动 OpenServiceA后ControlService
1 2 3 4 5 6 7 BOOL ControlService ( SC_HANDLE hService, DWORD dwControl, LPSERVICE_STATUS lpServiceStatus ) ;
卸载驱动 OpenServiceA后DeleteService
删除服务DeleteService函数
1 2 3 4 5 BOOL DeleteService ( SC_HANDLE hService ) ;
驱动加载/启动/停止/卸载案例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 BOOL loadDriver (const char * lpszDriverName, const char * sysFileName) { char szDriverImagePath[256 ] = { 0 }; GetFullPathNameA(sysFileName, 256 , szDriverImagePath, NULL ); myOutPutDebug("加载驱动的全路径名:%s" , szDriverImagePath); SC_HANDLE hMgr = OpenSCManagerA(NULL , NULL , SC_MANAGER_ALL_ACCESS); if (!hMgr) { myOutPutDebug("OpenSCManagerA失败 ERROR:%d" ,GetLastError()); return FALSE; } SC_HANDLE hSve = CreateServiceA(hMgr, lpszDriverName, lpszDriverName, SERVICE_START, SERVICE_KERNEL_DRIVER, SERVICE_DEMAND_START, SERVICE_ERROR_NORMAL, szDriverImagePath, NULL , NULL , NULL , NULL , NULL ); if (GetLastError()==ERROR_SERVICE_EXISTS) { hSve = OpenServiceA(hMgr, lpszDriverName, SERVICE_START); } myOutPutDebug("hSve:%X" , hSve); bool bRet = StartServiceW(hSve, NULL , NULL ); if (hSve) { CloseServiceHandle(hSve); } if (hMgr) { CloseServiceHandle(hMgr); } return bRet; } BOOL UnloadDriver (const char * lpszDriverName) { BOOL bRet = FALSE; SC_HANDLE hMgr = NULL ; SC_HANDLE hSve = NULL ; SERVICE_STATUS SveSta; hMgr = OpenSCManagerA(NULL , NULL , SC_MANAGER_ALL_ACCESS); if (!hMgr) { bRet = FALSE; goto BeforeLeave; } hSve = OpenServiceA(hMgr, lpszDriverName, SERVICE_ALL_ACCESS); if (!hSve) { bRet = FALSE; goto BeforeLeave; } if (!ControlService(hSve,SERVICE_CONTROL_STOP,&SveSta)) { bRet = FALSE; goto BeforeLeave; } if (!DeleteService(hSve)) { bRet = FALSE; goto BeforeLeave; } bRet = TRUE; BeforeLeave: if (hSve) { CloseServiceHandle(hSve); } if (hMgr) { CloseServiceHandle(hMgr); } return bRet; } void myOutPutDebug (const char * pszFormat, ...) { char szbufFormat[0x1000 ]; char szbufFormat_withHead[0x1100 ] = "" ; va_list argList; va_start(argList, pszFormat); vsprintf_s(szbufFormat, pszFormat, argList); strcat_s(szbufFormat_withHead, "zeroko: " ); strcat_s(szbufFormat_withHead, szbufFormat); OutputDebugStringA(szbufFormat_withHead); va_end(argList); } loadDriver("driverKMDFempty" , "driverKMDFempty.sys" ); UnloadDriver("driverKMDFempty" );
全局监听API实验
自己加载驱动
写拷贝(段页知识)
R3,R0通信
写HOOK
ShellCode
写拷贝的本来流程:
当写一个内存的时候先判断到内存是否可写(R/W位是否为1),若为0,则表示该内存不可写,进入异常,在异常中通过VAD进一步判断其到底是写拷贝还是只读,如果是只读报错;如果是写拷贝,则映射一份新物理页将原内容复制过来,直接写到新物理页上,不影响原物理页。因此你HOOK了一个API只影响你自己的进程,而无法影响别的进程是因为别的进程还是原物理页,并未被你修改。解决方法很简单,找到要hook API的地方将R/W位置1,根本不进异常直接hook原物理页,规避触发写拷贝。
下面代码针对2-9-9-12分页,并且事后未复原。
R0代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 #include <ntddk.h> #define CODE_CHANGE CTL_CODE(FILE_DEVICE_UNKNOWN,0x800,METHOD_BUFFERED,FILE_ANY_ACCESS) #define CODE_RESUME CTL_CODE(FILE_DEVICE_UNKNOWN,0x900,METHOD_BUFFERED,FILE_ANY_ACCESS) #define CODE_READ CTL_CODE(FILE_DEVICE_UNKNOWN,0x1000,METHOD_BUFFERED,FILE_ANY_ACCESS) UNICODE_STRING SymbolicLinkName; VOID DriverUnload (PDRIVER_OBJECT driver) { if (driver->DeviceObject) { IoDeleteDevice(driver->DeviceObject); } if (SymbolicLinkName.Length>0 ) { IoDeleteSymbolicLink(&SymbolicLinkName); } DbgPrint("停止运行了\n" ); } NTSTATUS MyCreateDispatchFunction (PDEVICE_OBJECT pDevObj, PIRP pIrp) { DbgPrint("三环连接成功\n" ); pIrp->IoStatus.Status = STATUS_SUCCESS; pIrp->IoStatus.Information = 0 ; IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; } NTSTATUS MyCloseDispatchFunction (PDEVICE_OBJECT pDevObj, PIRP pIrp) { DbgPrint("三环断开连接成功\n" ); pIrp->IoStatus.Status = STATUS_SUCCESS; pIrp->IoStatus.Information = 0 ; IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; } ULONG param[5 ] = {0 ,0 ,0 ,0 ,0 }; void __declspec(naked) interruptGate(){ __asm { pushfd; pushad; mov eax, dword ptr ds : [esp + 0x24 + 0xC ] ; lea ecx, param; add eax, 4 ; mov ebx, dword ptr ds : [eax] ; mov dword ptr ds : [ecx] , ebx; mov ebx, dword ptr ds : [eax+4 ] ; mov dword ptr ds : [ecx+4 ] , ebx; mov ebx, dword ptr ds : [eax+8 ] ; mov dword ptr ds : [ecx+8 ] , ebx; mov ebx, dword ptr ds : [eax + 0xC ] ; mov dword ptr ds : [ecx + 0xC ] , ebx; add dword ptr ds : [ecx + 0x10 ],1 popad; popfd; iretd; } } ULONG current = 0 ; NTSTATUS ControlCallBack (PDEVICE_OBJECT pDevObj, PIRP pIrp) { PIO_STACK_LOCATION psl = IoGetCurrentIrpStackLocation(pIrp); ULONG code = psl->Parameters.DeviceIoControl.IoControlCode; PVOID systemBuf = pIrp->AssociatedIrp.SystemBuffer; ULONG inLen = psl->Parameters.DeviceIoControl.InputBufferLength; ULONG outLen = psl->Parameters.DeviceIoControl.OutputBufferLength; UCHAR IDT[6 ] = { 0 }; UCHAR GDT[6 ] = { 0 }; ULONG IDT_BASE = 0 ; ULONG GDT_BASE = 0 ; switch (code) { case CODE_CHANGE: __asm sidt IDT; IDT_BASE = *(PULONG)(&IDT[2 ]); DbgPrint("shellCode地址为:%p\n" , interruptGate); ULONG firstPart = (((ULONG)interruptGate) & 0xFFFF0000 ) | 0x0000EE00 ; ULONG secondPart = (((ULONG)interruptGate) & 0x0000FFFF ) | 0x00080000 ; DbgPrint("中断门描述符:%p`%p\n" , firstPart, secondPart); *(PULONG)(IDT_BASE + 32 * 8 ) = secondPart; *(PULONG)(IDT_BASE + 32 * 8 + 4 ) = firstPart; __asm sgdt GDT; GDT_BASE = *(PULONG)(&GDT[2 ]); ULONG targetAddress = *(ULONG*)systemBuf; DbgPrint("targetAddress:%p\n" , targetAddress); ULONG firstPart_gdt = (((ULONG)targetAddress) & 0xFFFF0000 ) | 0x0000EC00 ; ULONG secondPart_gdt = (((ULONG)targetAddress) & 0x0000FFFF ) | 0x00080000 ; DbgPrint("调用门描述符:%p`%p\n" , firstPart_gdt, secondPart_gdt); *(PULONG)(GDT_BASE + 9 * 8 ) = secondPart_gdt; *(PULONG)(GDT_BASE + 9 * 8 + 4 ) = firstPart_gdt; break ; case CODE_RESUME: break ; case CODE_READ: if (param[4 ]!= current) { memcpy (systemBuf, param, 20 ); pIrp->IoStatus.Information = 20 ; current++; } else { pIrp->IoStatus.Information = 0 ; } break ; } IoCompleteRequest(pIrp, IO_NO_INCREMENT); return STATUS_SUCCESS; } NTSTATUS DriverEntry (PDRIVER_OBJECT pdriver, PUNICODE_STRING pReg) { pdriver->DriverUnload = DriverUnload; UNICODE_STRING Devicename; RtlInitUnicodeString(&Devicename, L"\\Device\\MyDevice" ); PDEVICE_OBJECT pDeviceObj = NULL ; NTSTATUS status = IoCreateDevice(pdriver,0 ,&Devicename,FILE_DEVICE_UNKNOWN,FILE_DEVICE_SECURE_OPEN,TRUE,&pDeviceObj ); if (!NT_SUCCESS(status)) { DbgPrint("创建设备失败!\n" ); return status; } pDeviceObj->Flags |= DO_BUFFERED_IO; RtlInitUnicodeString(&SymbolicLinkName, L"\\??\\MyTestDriver" ); status = IoCreateSymbolicLink(&SymbolicLinkName, &Devicename); if (!NT_SUCCESS(status)) { DbgPrint("创建符号链接失败!\n" ); IoDeleteDevice(pDeviceObj); return status; } pdriver->MajorFunction[IRP_MJ_CREATE] = MyCreateDispatchFunction; pdriver->MajorFunction[IRP_MJ_CLOSE] = MyCloseDispatchFunction; pdriver->MajorFunction[IRP_MJ_DEVICE_CONTROL] = ControlCallBack; return STATUS_SUCCESS; }
R3代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 #include "stdafx.h" #include <stdio.h> #include <stdlib.h> #include <Windows.h> #include <WinIoCtl.h> #define CODE_CHANGE CTL_CODE(FILE_DEVICE_UNKNOWN,0x800,METHOD_BUFFERED,FILE_ANY_ACCESS) #define CODE_RESUME CTL_CODE(FILE_DEVICE_UNKNOWN,0x900,METHOD_BUFFERED,FILE_ANY_ACCESS) #define CODE_READ CTL_CODE(FILE_DEVICE_UNKNOWN,0x1000,METHOD_BUFFERED,FILE_ANY_ACCESS) BOOLEAN openDevice (HANDLE *handle) { HANDLE _handle = CreateFileA("\\\\.\\MyTestDriver" , GENERIC_READ | GENERIC_WRITE, 0 , NULL , OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL ); *handle = _handle; return (int )_handle > 0 ; } BOOLEAN sendCode (HANDLE hDevice, DWORD code, PVOID inData, ULONG Inlen, PVOID outData, ULONG outLen, LPDWORD resultLen) { return DeviceIoControl(hDevice, code, inData, Inlen, outData, outLen, resultLen, NULL ); } DWORD lowPDE,lowPTE; DWORD highPDE,highPTE; void __declspec(naked) callGate(){ _asm { pushfd; pushad; mov ecx,dword ptr ds:[MessageBoxA]; mov eax,ecx; shr eax,21 ; and eax,0x1FF ; shl eax,3 ; mov edx,dword ptr ds:[0xC0601000 +eax]; mov dword ptr ds:[lowPDE],edx; mov edx,dword ptr ds:[0xC0601000 +eax+4 ]; mov dword ptr ds:[highPDE],edx; mov eax,ecx; shr eax,12 ; and eax,0xFFFFF ; shl eax,3 ; mov edi,dword ptr ds:[0xC0000000 +eax]; mov dword ptr ds:[lowPTE],edi; mov edx,dword ptr ds:[0xC0000000 +eax+4 ]; mov dword ptr ds:[highPTE],edx; or edi,0x2 ; mov dword ptr ds:[0xC0000000 +eax],edi popad; popfd; retf; } } void main () { __asm { mov eax, dword ptr ds:[MessageBoxA]; mov eax,[eax]; } printf ("MessageBoxA address:%p\n" ,MessageBoxA); HANDLE hDevice; char buf[30 ] = { 0 }; DWORD realReaded = 0 ; if (!openDevice(&hDevice)) { printf ("打开设备对象失败!\r\n" ); system("pause" ); return ; } *(DWORD*)buf=(DWORD)callGate; sendCode(hDevice, CODE_CHANGE, buf, 30 , NULL , 0 , &realReaded); printf ("callGate address:%p\n" ,callGate); char callCallgate[6 ]={0 ,0 ,0 ,0 ,0x48 ,0 }; _asm { call fword ptr[callCallgate]; } printf ("PDE:%p`%p\n" ,highPDE,lowPDE); printf ("PTE:%p`%p\n" ,highPTE,lowPTE); char hookContent[2 ]={0xCD ,0x20 }; memcpy (MessageBoxA,hookContent,2 ); DWORD current=0 ; while (1 ) { sendCode(hDevice, CODE_READ, NULL , 0 , buf, 30 , &realReaded); DWORD* p=(DWORD*)buf; if (realReaded>0 ) { printf ("No.%d MessageBoxA(%p,%p,%p,%p)\n" ,p[4 ],p[0 ],p[1 ],p[2 ],p[3 ]); current++; } Sleep(100 ); } CloseHandle(hDevice); system("pause" ); }
成功监听MessageBoxA结果:
别人的代码参考
重难点
跟界面相关的API永远都是懒加载 的,即没调用不加载,物理页不会挂上去。
但是OpenProcess这种,他自己事先就加载好了,挂上了物理页。
Inline Hook 与R3的Inline Hook完全一样
位置的选择:
JMP/CALL指令至少占用5个字节
绕开全局变量(每次的全局变量位置是不确定,因为模块加载的顺序不一致)
根据业务来决定在哪里HOOK,过滤参数?修改返回结果?
思考:
正在hook的瞬间,如何保证多核切换的稳定性
如何绕过[[硬编码]]校验检测内联HOOK
注册系统回调保护进程 xp不可用
替代hook的官方手段:回调函数 (64位未过pg不能inline hook的替代方案)
注册系统回调最需要注意的一点就是: 一定要防止回调发生死循环
核心函数ObRegisterCallbacks 可以为线程、进程和桌面句柄操作注册回调函数
1 2 3 4 5 NTSTATUS ObRegisterCallbacks ( IN POB_CALLBACK_REGISTRATION CallBackRegistration, OUT PVOID *RegistrationHandle) ;
破解ObRegisterCallbacks函数的使用限制 : 驱动程序必须有数字签名才能使用此函数,通过逆向ObRegisterCallbacks,找到了破解这个限制的方法.经研究,内核通过MmVerifyCallbackFunction验证此回调是否合法,但此函数只是简单的验证了一下DriverObject->DriverSection->Flags的值是不是包含0x20.在驱动的入口函数中添加代码: PLDR_DATA_TABLE_ENTRY pobj = (PLDR_DATA_TABLE_ENTRY)DriverObject->DriverSection;DriverObject->Flags |= 0x20; (PLDR_DATA_TABLE_ENTRY需要自己定义),即可破解该使用限制
想要使用ObRegisterCallbacks函数成功,必须在编译器的 链接器-命令行行中添加 /INTEGRITYCHECK (指定必须在加载时检查二进制映像的签名)
关于/INTEGRITYCHECK详细信息 https://docs.microsoft.com/zh-cn/cpp/build/reference/integritycheck-require-signature-check?view=msvc-160
该函数第一个参数指向下面结构
OB_CALLBACK_REGISTRATION结构 1 2 3 4 5 6 7 typedef struct _OB_CALLBACK_REGISTRATION { __in USHORT Version; __in USHORT OperationRegistrationCount; __in UNICODE_STRING Altitude; __in PVOID RegistrationContext; __in OB_OPERATION_REGISTRATION *OperationRegistration; } OB_CALLBACK_REGISTRATION, *POB_CALLBACK_REGISTRATION;
可见成员又指向_OB_OPERATION_REGISTRATION结构体
_OB_OPERATION_REGISTRATION结构体 1 2 3 4 5 6 typedef struct _OB_OPERATION_REGISTRATION { __in POBJECT_TYPE *ObjectType; __in OB_OPERATION Operations; __in POB_PRE_OPERATION_CALLBACK PreOperation; __in POB_POST_OPERATION_CALLBACK PostOperation; } OB_OPERATION_REGISTRATION, *POB_OPERATION_REGISTRATION;
上述函数第三个参数指向一个自定的回调函数如下
自定义回调函数 1 2 3 4 5 6 7 8 9 OB_PREOP_CALLBACK_STATUS my_pre_callback ( PVOID RegistrationContext, POB_PRE_OPERATION_INFORMATION OperationInformation ) { return OB_PREOP_SUCCESS; }
POB_PRE_OPERATION_INFORMATION结构
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 typedef struct _OB_PRE_OPERATION_INFORMATION { OB_OPERATION Operation; union { ULONG Flags; struct { ULONG KernelHandle : 1 ; ULONG Reserved : 31 ; }; }; PVOID Object; POBJECT_TYPE ObjectType; PVOID CallContext; POB_PRE_OPERATION_PARAMETERS Parameters; } OB_PRE_OPERATION_INFORMATION, *POB_PRE_OPERATION_INFORMATION; typedef union _OB_PRE_OPERATION_PARAMETERS { OB_PRE_CREATE_HANDLE_INFORMATION CreateHandleInformation; OB_PRE_DUPLICATE_HANDLE_INFORMATION DuplicateHandleInformation; } OB_PRE_OPERATION_PARAMETERS, *POB_PRE_OPERATION_PARAMETERS; typedef struct _OB_PRE_CREATE_HANDLE_INFORMATION { ACCESS_MASK DesiredAccess; ACCESS_MASK OriginalDesiredAccess; } OB_PRE_CREATE_HANDLE_INFORMATION, *POB_PRE_CREATE_HANDLE_INFORMATION;
注册系统回调案例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 ldr = (PLDR_DATA)pDriverObject->DriverSection; ldr->Flags |= 0x20 ; HANDLE gs_HandleCallback = NULL ; BOOLEAN protectProcessStart () { OB_CALLBACK_REGISTRATION ob1_callback_reg = { 0 }; OB_OPERATION_REGISTRATION ob2_operation = { 0 }; RtlInitUnicodeString(&ob1_callback_reg.Altitude, L"321000" ); ob1_callback_reg.RegistrationContext = NULL ; ob1_callback_reg.Version = OB_FLT_REGISTRATION_VERSION; ob1_callback_reg.OperationRegistrationCount = 1 ; ob1_callback_reg.OperationRegistration = &ob2_operation; ob2_operation.ObjectType = PsProcessType; ob2_operation.Operations = OB_OPERATION_HANDLE_CREATE; ob2_operation.PostOperation = NULL ; ob2_operation.PreOperation = my_pre_callback; NTSTATUS ntRet = ObRegisterCallbacks(&ob1_callback_reg, &gs_HandleCallback); KdPrint(("zeroko:sys安装进程保护:gs_HandleCallback=%p,ntRet=%x" , gs_HandleCallback,ntRet)); return ntRet == STATUS_SUCCESS; } void protectProcessEnd () { if (gs_HandleCallback) { ObUnRegisterCallbacks(gs_HandleCallback); gs_HandleCallback = NULL ; KdPrint(("zeroko:sys卸载进程保护" )); } } OB_PREOP_CALLBACK_STATUS my_pre_callback ( PVOID RegistrationContext, POB_PRE_OPERATION_INFORMATION OperationInformation ) { if (OperationInformation->KernelHandle) { } else { HANDLE dwTargetPId = PsGetProcessId((PEPROCESS)OperationInformation->Object); if (isInProtectPidsVec(dwTargetPId)) { ACCESS_MASK newAccess = OperationInformation->Parameters->CreateHandleInformation.OriginalDesiredAccess; newAccess &= ~PROCESS_TERMINATE; newAccess &= ~PROCESS_VM_READ; newAccess &= ~PROCESS_VM_WRITE; OperationInformation->Parameters->CreateHandleInformation.DesiredAccess = newAccess; } } return OB_PREOP_SUCCESS; }
补充 进程有哪些权限 即使是任务管理器对进程进行操作,也需要获取对应进程权限才可以操作进程,因此如果用回调函数拦截了目标进程相应句柄的权限,则任务管理器也会无权限操作目标进程.
进程权限如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #define PROCESS_TERMINATE (0x0001) #define PROCESS_CREATE_THREAD (0x0002) #define PROCESS_SET_SESSIONID (0x0004) #define PROCESS_VM_OPERATION (0x0008) #define PROCESS_VM_READ (0x0010) #define PROCESS_VM_WRITE (0x0020) #define PROCESS_DUP_HANDLE (0x0040) #define PROCESS_CREATE_PROCESS (0x0080) #define PROCESS_SET_QUOTA (0x0100) #define PROCESS_SET_INFORMATION (0x0200) #define PROCESS_QUERY_INFORMATION (0x0400) #define PROCESS_SUSPEND_RESUME (0x0800) #define PROCESS_QUERY_LIMITED_INFORMATION (0x1000) #define PROCESS_SET_LIMITED_INFORMATION (0x2000) #if (NTDDI_VERSION >= NTDDI_VISTA) #define PROCESS_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | \ 0xFFFF) #else #define PROCESS_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | \ 0xFFF) #endif
驱动中通过进程对象结构体首地址获取进程名 1 2 3 4 5 char * processName = (char *)EProcess+0x174 ;char * processName2 = PsGetProcessImageFileName(EProcess);const char * PsGetProcessImageFileName (PEPROCESS arg1) ;
即可以获取当前进程名(最多显示14个字节)
1 PsGetProcessImageFileName(PsGetCurrentProcess());
获取当前进程pid函数: PsGetCurrentProcessId
在系统回调中获取目标进程id
1 HANDLE pid = PsGetProcessId((PEPROCESS)OperationInformation->OBject);
进程id获取进程名 核心函数
PsLookupProcessByProcessId ObfDereferenceObject (成对使用)
1 2 3 4 5 6 7 8 9 10 11 12 13 const char * GetProcessNameByProcessId (HANDLE ProcessId) { NTSTATUS st = STATUS_UNSUCCESSFUL; PEPROCESS ProcessObj = NULL ; const char * PNameString = NULL ; st = PsLookupProcessByProcessId(ProcessId, &ProcessObj); if (NT_SUCCESS(st)) { PNameString = PsGetProcessImageFileName(ProcessObj); ObfDereferenceObject(ProcessObj); } return PNameString; }
另一种实现方式 这种方式在注册OpenProcess系统回调函数中使用会蓝屏
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 const char * GetProcessName (ULONG dwPid) { HANDLE ProcessHandle; NTSTATUS status; OBJECT_ATTRIBUTES ObjectAttributes; CLIENT_ID myCid; PEPROCESS EProcess; const char * PsName = NULL ; InitializeObjectAttributes(&ObjectAttributes, 0 , 0 , 0 , 0 ); myCid.UniqueProcess = (HANDLE)dwPid; myCid.UniqueThread = 0 ; status = ZwOpenProcess(&ProcessHandle, PROCESS_ALL_ACCESS, &ObjectAttributes,&myCid); if (!NT_SUCCESS(status)) { KdPrint(("zeroko:kernel:打开进程出错\n" )); return NULL ; } status = ObReferenceObjectByHandle(ProcessHandle,FILE_READ_DATA,0 ,KernelMode,&EProcess,0 ); if (!NT_SUCCESS(status)) { PsName = PsGetProcessImageFileName(EProcess); KdPrint(("zeroko:kernel:PsName is %s" , PsName)); ZwClose(ProcessHandle); } else { KdReint(("zeroko:kernel:Get ProcessName error" )); } return PsName; }
NtOpenProcess和ZwOpenProcess对应的函数地址实际上是同一个,只是符号不同.
如果在注册OpenProcess系统回调中使用此函数,就会陷入无限递归的死循环 NtOpenProcess -> my_pre_callback -> GetProcessName -> NtOpenProcess ,最终导致堆栈溢出蓝屏
驱动中设置断点: 代码的方式下断点 1 #define DbgBreakPoint __debugbreak
使用方式: DbgBreakPoint();或者 __debugbreak();
windbg直接下断点 bu 模块名!函数名 例如: bu mysys!testFunc bp mysys!testFunc
远程读写绕过系统回调保护 远程读写效率怎么都比不上内部读写
进程挂靠的方式实现 用到的核心函数
KeStackAttachProcess 进程挂靠 (直接修改CR3应该也可以)
KeUnstackDetachProcess 解除进程挂靠
此处为内核申请一个过渡的内核内存,来临时存放要读的数据
读进程 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 BOOLEAN ReadProcessMemoryByPid (UINT32 dwPid, PVOID pBase, PVOID lpBuffer, UINT32 nSize) { PEPROCESS Seleted_pEPROCESS = NULL ; KdPrint(("zeroko:kernel:ReadMemory pid=%d,pBase=%p lineNo.%d is in Func:%s\n" ,dwPid,pBase,__LINE__,__FUNCDNAME__)); if (PsLookupProcessByProcessId(dwPid,&Seleted_pEPROCESS)==STATUS_SUCCESS) { BOOLEAN br = KReadProcessMemory(Seleted_pEPROCESS, pBase,nSize, lpBuffer); ObDereferenceObject(Seleted_pEPROCESS); if (br) { return TRUE; } } else { KdPrint(("zeroko:kernel:PsLookupProcessByProcessId Fail...\n" )); } return FALSE; } BOOLEAN KReadProcessMemory2 (IN PEPROCESS Process, IN PVOID Address, IN UINT32 Length, IN OUT PVOID Buffer) { KAPC_STATE apc_state; RtlZeroMemory(&apc_state, sizeof (KAPC_STATE)); PVOID tmpBuf_Kernel = ExAllocatePool(NonPagedPool, Length); if (!tmpBuf_Kernel) { KdPrint(("zeroko:kernel:内核空间申请失败\n" )); return FALSE; } KdPrint(("zeroko:kernel:附加到目标进程Address = %p BUffer=%p\n" ,Address,Buffer)); KeStackAttachProcess((PVOID)Process, &apc_state); BOOLEAN dwRet = MmIsAddressValid(Address); if (dwRet) { RtlCopyMemory(tmpBuf_Kernel, Address, Length); } else { KdPrint(("zeroko:kernel:Error Line37\n" )); } KeUnstackDetachProcess(&apc_state); KdPrint(("zeroko:kernel:分离目标进程\n" )); RtlCopyMemory(Buffer, tmpBuf_Kernel, Length); ExFreePool(tmpBuf_Kernel); return dwRet; } BOOLEAN KReadProcessMemory (IN PEPROCESS Process, IN PVOID Address, IN UINT32 Length, IN OUT PVOID Buffer) { KAPC_STATE apc_state; RtlZeroMemory(&apc_state, sizeof (KAPC_STATE)); KdPrint(("zeroko:kernel:附加到目标进程Address = %p BUffer=%p\n" , Address, Buffer)); KeStackAttachProcess((PVOID)Process, &apc_state); BOOLEAN dwRet = MmIsAddressValid(Address); if (dwRet) { RtlCopyMemory(Buffer, Address, Length); } else { KdPrint(("zeroko:kernel:Error Line37\n" )); } KeUnstackDetachProcess(&apc_state); return dwRet; }
写进程 下面函数不能写只读内存
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 BOOLEAN KWriteProcessMemory (IN PEPROCESS Process, IN PVOID Address, IN UINT32 Length, IN PVOID UserBuffer) { KAPC_STATE apc_state; RtlZeroMemory(&apc_state, sizeof (KAPC_STATE)); PVOID tmpBuf_Kernel = ExAllocatePool(NonPagedPool, Length); if (!tmpBuf_Kernel) { KdPrint(("zeroko:kernel:内核空间申请失败\n" )); return FALSE; } BOOLEAN dwRet = MmIsAddressValid(UserBuffer); if (dwRet) { RtlCopyMemory(tmpBuf_Kernel, UserBuffer, Length); } else { KdPrint(("zeroko:kernel:UserBuffer memory Error Line37\n" )); ExFreePool(tmpBuf_Kernel); return FALSE; } KeStackAttachProcess((PVOID)Process, &apc_state); dwRet = MmIsAddressValid(Address); if (dwRet) { RtlCopyMemory(Address, tmpBuf_Kernel, Length); } else { KdPrint(("zeroko:kernel:Error Line37\n" )); } KeUnstackDetachProcess(&apc_state); ExFreePool(tmpBuf_Kernel); return dwRet; } BOOLEAN WriteProcessMemoryByPid (UINT32 dwPid, PVOID pBase, PVOID lpBuffer, UINT32 nSize) { PEPROCESS Seleted_pEPROCESS = NULL ; KdPrint(("zeroko:kernel:WriteMemory pid=%d,pBase=%p lineNo.%d is in Func:%s\n" , dwPid, pBase, __LINE__, __FUNCDNAME__)); if (PsLookupProcessByProcessId(dwPid, &Seleted_pEPROCESS) == STATUS_SUCCESS) { BOOLEAN br = KWriteProcessMemory(Seleted_pEPROCESS, pBase, nSize, lpBuffer); ObDereferenceObject(Seleted_pEPROCESS); if (br) { return TRUE; } } else { KdPrint(("zeroko:kernel:PsLookupProcessByProcessId Fail...\n" )); } return FALSE; }
直接写入只读内存会蓝屏,下面有写只读内存的方式
MDL方式 优势:对于大内存远程读取写入有速度优势
上述过渡的内核内存,可以使用MDL映射方式替代:
用到的核心函数
IoAllocateMdl 申请映射内存描述信息 IoFreeMdl 释放映射内存描述信息
MmBuildMdlForNonPagedPool 把内存标记为非分页内存,防止数据因为内存不足而被迁移到硬盘上
MmMapLockedPages 锁定内存映射 MmUnmapLockedPages 解除内存映射锁定
当不再需要 MDL描述的页的时,请调用MmUnlockPages将它们解除锁定,然后调用IoFreeMdl 来释放它们
读内存 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 BOOLEAN KReadProcessMemory3 (IN PEPROCESS Process, IN PVOID Address, IN UINT32 Length, IN PVOID UserBuffer) { KAPC_STATE apc_state; RtlZeroMemory(&apc_state, sizeof (KAPC_STATE)); PMDL g_pmdl = IoAllocateMdl(UserBuffer, Length, 0 , 0 , NULL ); if (!g_pmdl) { return FALSE; } MmBuildMdlForNonPagedPool(g_pmdl); unsigned char * Mapped = (unsigned char *)MmMapLockedPages(g_pmdl, KernelMode); if (!Mapped) { IoFreeMdl(g_pmdl); return FALSE; } KeStackAttachProcess((PVOID)Process, &apc_state); BOOLEAN dwRet = MmIsAddressValid(Address); if (dwRet) { RtlCopyMemory(Mapped, Address, Length); } else { KdPrint(("zeroko:kernel:Error Line37\n" )); } KeUnstackDetachProcess(&apc_state); IoFreeMdl(g_pmdl); MmUnmapLockedPages((PVOID)Mapped, g_pmdl); IoFreeMdl(g_pmdl); return dwRet; }
写内存 三环是通过 VirtualProtectEx 或 VirtualQueryEx 函数来修改页面属性来达到写只读内存的目的(E.g. CE修改器就是采取这套方式)
下面是可以用于写只读内存的驱动实现方式
核心点是: MmProbeAndLockPages 将 MdlFlags = MDL_WRITE_OPERATION | MDL_ALLOCATED_FIXED_SIZE | MDL_PAGES_LOCKED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 BOOLEAN KWriteProcessMemory (IN PEPROCESS Process, IN PVOID Address, IN UINT32 Length, IN PVOID UserBuffer) { KAPC_STATE apc_state; RtlZeroMemory(&apc_state, sizeof (KAPC_STATE)); KeStackAttachProcess((PVOID)Process, &apc_state); BOOLEAN dwRet = MmIsAddressValid(Address); if (!dwRet) { KdPrint(("zeroko:kernel: ERROR LINE%d\n" , __LINE__)); KeUnstackDetachProcess(&apc_state); return FALSE; } PMDL g_pmdl = IoAllocateMdl(Address, Length, 0 , 0 , NULL ); if (!g_pmdl) { KdPrint(("zeroko:kernel: ERROR LINE%d\n" , __LINE__)); KeUnstackDetachProcess(&apc_state); return FALSE; } MmBuildMdlForNonPagedPool(g_pmdl); g_pmdl->MdlFlags = MDL_WRITE_OPERATION | MDL_ALLOCATED_FIXED_SIZE | MDL_PAGES_LOCKED; unsigned char * Mapped = (unsigned char *)MmMapLockedPages(g_pmdl, KernelMode); if (!Mapped) { KdPrint(("zeroko:kernel: ERROR LINE%d\n" , __LINE__)); IoFreeMdl(g_pmdl); KeUnstackDetachProcess(&apc_state); return FALSE; } KeUnstackDetachProcess(&apc_state); RtlCopyMemory(Mapped, UserBuffer, Length); MmUnmapLockedPages((PVOID)Mapped, g_pmdl); IoFreeMdl(g_pmdl); return TRUE; }
CR0方式写只读内存 内存类型
PagedPool 可以被置换到硬盘中,一般存储数据
NonPagedPool 不能被置换到硬盘中,驻留在内存中,一般用来存储代码
如果执行代码到PagedPool的内存中很有可能蓝屏
在内核空间中所有内存都是可读可写可执行的 ,故没有类似用户态下的VirtualProtect改变内存属性的函数,但是并不意味着可以随意执行和改写内存中的代码,要满足2个条件 :
关闭内存写保护 通过操作CR0寄存器实现
提升IRQL级别(防止执行出错) 使用 KeRaiseIrqlToDpcLevel和 KeLowerIrql 实现
__readcr0()函数 需要头文件: #include <intrin.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 KIRQL irql = KeRaiseIrqlToDpcLevel(); UINT64 cr0 = __readcr0(); cr0 &= 0xfffffffffffeffff ; __writecr0(cr0); _disable(); UINT64 cr0 = __readcr0(); cr0 |= 0x10000 ; _enable(); KeLowerIrql(irql);
物理内存读写内存方法 物理内存读写内存速度比较慢,不建议用于频繁地读写内存,一般用于注入代码
核心函数
ZwMapViewOfSection 把物理地址映射到当前进程
ZeUnmapViewOfSection 取消映射
MmGetPhysicalAddress 虚拟地址转换为物理地址
ZwMapViewOfSection 1 2 3 4 5 6 7 8 9 10 11 12 NTSYSAPI NTSTATUS ZwMapViewOfSection ( [in] HANDLE SectionHandle, [in] HANDLE ProcessHandle, [in, out] PVOID *BaseAddress, [in] ULONG_PTR ZeroBits, [in] SIZE_T CommitSize, [in, out, optional] PLARGE_INTEGER SectionOffset, [in, out] PSIZE_T ViewSize, [in] SECTION_INHERIT InheritDisposition, [in] ULONG AllocationType, [in] ULONG Win32Protect ) ;
完整代码 最外层的读写内存接口 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 BOOLEAN ReadPhysicalMemoryByPid (UINT32 dwPid, PVOID pBase, PVOID lpBuffer, UINT32 nSize) { PVOID physicalAddress = GetPhysicalAddress(dwPid, pBase); KdPrint(("zeroko:kernel:获取到的物理地址为%llx\n" , physicalAddress)); if (physicalAddress) { return ReadPhysicalMemory(physicalAddress, nSize, lpBuffer); } else { return FALSE; } } BOOLEAN WritePhysicalMemoryByPid (UINT32 dwPid, PVOID pBase, PVOID lpBuffer, UINT32 nSize) { PVOID physicalAddress = GetPhysicalAddress(dwPid, pBase); KdPrint(("zeroko:kernel:获取到的物理地址为%llx\n" , physicalAddress)); if (physicalAddress) { return WritePhysicalMemory(physicalAddress, nSize, lpBuffer); } else { return FALSE; } }
获取最大物理地址函数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 UINT64 g_maxPhysAddress = 0 ; UINT64 getg_maxPhysAddress (void ) { if (g_maxPhysAddress == 0 ) { int physicalbits; UINT32 r[4 ]; __cpuid(r, 0x80000008 ); physicalbits = r[0 ] & 0xff ; g_maxPhysAddress = 0xFFFFFFFFFFFFFFFF ULL; g_maxPhysAddress = g_maxPhysAddress >> physicalbits; g_maxPhysAddress = ~(g_maxPhysAddress << physicalbits); } return g_maxPhysAddress; }
获取物理地址的值函数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 PVOID GetPhysicalAddress (UINT64 ProcessId, PVOID vBaseAddress) { PEPROCESS selectedProcess; PHYSICAL_ADDRESS physical; physical.QuadPart = 0 ; NTSTATUS ntStatus = STATUS_SUCCESS; __try { if (PsLookupProcessByProcessId((PVOID)(ProcessId), &selectedProcess)==STATUS_SUCCESS) { KAPC_STATE apc_state; RtlZeroMemory(&apc_state, sizeof (apc_state)); KeStackAttachProcess((PVOID)selectedProcess, &apc_state); __try { physical = MmGetPhysicalAddress((PVOID)vBaseAddress); } __finally { KeUnstackDetachProcess(&apc_state); } ObDereferenceObject(selectedProcess); } } __except (1 ) { ntStatus = STATUS_UNSUCCESSFUL; } if (ntStatus == STATUS_SUCCESS) { return (PVOID)physical.QuadPart; } return NULL ; }
物理内存读写函数 读函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 BOOLEAN ReadPhysicalMemory (char * physicalBase, UINT_PTR bytestoread, void * output) { UNICODE_STRING physmemString; OBJECT_ATTRIBUTES attributes; HANDLE physmem = NULL ; UCHAR* vaddress; KdPrint(("zeroko:kernel:要读的物理地址为%llx 最大物理地址为%llx \n" , physicalBase, getg_maxPhysAddress())); if (((UINT64)physicalBase > getg_maxPhysAddress()) || ((UINT64)physicalBase + bytestoread > getg_maxPhysAddress())) { KdPrint(("zeroko:kernel: Invalid physical address\n" )); return FALSE; } __try { RtlInitUnicodeString(&physmemString, L"\\device\\physicalmemory" ); InitializeObjectAttributes(&attributes,&physmemString, OBJ_CASE_INSENSITIVE, NULL , NULL ); NTSTATUS ntStatus = ZwOpenSection(&physmem, SECTION_ALL_ACCESS, &attributes); if (ntStatus == STATUS_SUCCESS) { PHYSICAL_ADDRESS viewBase; viewBase.QuadPart = (ULONGLONG)(physicalBase); KdPrint(("zeroko:kernel:ReadPhysicalMemory:viewBase.QuadPart=%x" , viewBase.QuadPart)); SIZE_T length = bytestoread; ntStatus = ZwMapViewOfSection( physmem, NtCurrentProcess(), &vaddress, 0L , length, &viewBase, &length, ViewShare, 0 , PAGE_READWRITE); if (ntStatus == STATUS_SUCCESS && vaddress != NULL ) { if (bytestoread > length) { KdPrint(("zeroko:kernel:Too small map\n" )); } else { RtlCopyMemory(output, vaddress, bytestoread); } ZwUnmapViewOfSection(NtCurrentProcess(), vaddress); } } } __except (1 ) { KdPrint(("zeroko:kernel:Failure mapping physical memory" )); } ZwClose(physmem); return TRUE; }
写函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 BOOLEAN WritePhysicalMemory (char * physicalBase, IN UINT_PTR nSizeWrite, IN PVOID input) { UNICODE_STRING physmemString; OBJECT_ATTRIBUTES attributes; HANDLE physmem = NULL ; UCHAR* vaddress; if (((UINT64)physicalBase > getg_maxPhysAddress()) || ((UINT64)physicalBase + nSizeWrite > getg_maxPhysAddress())) { KdPrint(("zeroko:kernel: Invalid physical address\n" )); return FALSE; } __try { RtlInitUnicodeString(&physmemString, L"\\device\\physicalmemory" ); InitializeObjectAttributes(&attributes, &physmemString, OBJ_CASE_INSENSITIVE, NULL , NULL ); NTSTATUS ntStatus = ZwOpenSection(&physmem, SECTION_ALL_ACCESS, &attributes); if (ntStatus == STATUS_SUCCESS) { PHYSICAL_ADDRESS viewBase; viewBase.QuadPart = (ULONGLONG)(physicalBase); KdPrint(("zeroko:kernel:ReadPhysicalMemory:viewBase.QuadPart=%x" , viewBase.QuadPart)); SIZE_T length = 0x2000 ; ntStatus = ZwMapViewOfSection( physmem, NtCurrentProcess(), &vaddress, 0L , length, &viewBase, &length, ViewShare, 0 , PAGE_READWRITE); if (ntStatus == STATUS_SUCCESS && vaddress != NULL ) { if (nSizeWrite > length) { KdPrint(("zeroko:kernel:Too small map\n" )); } else { RtlCopyMemory(vaddress, input, nSizeWrite); } ZwUnmapViewOfSection(NtCurrentProcess(), vaddress); } } } __except (1 ) { KdPrint(("zeroko:kernel:Failure mapping physical memory" )); } ZwClose(physmem); return TRUE; }
针对对象回调钩子的操作 遍历进程/线程对象钩子 兼容win7~win10
需要用的自定义结构和变量 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 typedef struct _CALL_BACK_INFO { ULONG64 Unknow; ULONG64 Unknow1; UNICODE_STRING AltitudeString; LIST_ENTRY NextEntryItemList; ULONG64 Operations; PVOID ObHandle; PVOID ObjectType; ULONG64 PreCallbackAddr; ULONG64 PostCallbackAddr; }CALL_BACK_INFO, * PCALL_BACK_INFO; typedef struct _OB_CALLBACK { LIST_ENTRY ListEntry; ULONG64 Operations; PCALL_BACK_INFO ObHandle; ULONG64 ObjTypeAddr; ULONG64 PreCall; ULONG64 PostCall; } OB_CALLBACK, * POB_CALLBACK; static ULONG ObjectCallbackListOffset = 0 ;extern PSHORT NtBuildNumber;
遍历回调需要用到的自定义子函数(包含依赖关系)
GetVersionAndHardCode
GetPsLoadedListModule 获取模块链表头
GetUndocumentFunctionAddress 通过函数名获取未文档化的函数地址
GetMovPoint
ObGetDriverNameByPoint 通过地址,获取对应模块的模块名
(上面子函数具备通用性的有文字描述)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 BOOLEAN GetVersionAndHardCode () { BOOLEAN b = FALSE; switch (*NtBuildNumber) { case 7600 : case 7601 : { ObjectCallbackListOffset = 0xC0 ; b = TRUE; break ; } case 9200 : { ObjectCallbackListOffset = 0xC8 ; b = TRUE; break ; } case 9600 : { ObjectCallbackListOffset = 0xC8 ; b = TRUE; break ; } default : if (*NtBuildNumber > 10000 ) { ObjectCallbackListOffset = 0xc8 ; b = TRUE; } break ; } return b; } PVOID GetUndocumentFunctionAddress (IN PUNICODE_STRING pFunName, IN PUCHAR pStartAddress, IN UCHAR* pFeatureCode, IN ULONG FeatureCodeNum, ULONG SerSize, UCHAR SegCode, ULONG AddNum, BOOLEAN ByName) { ULONG dwIndex = 0 ; PUCHAR pFunAddress = NULL ; ULONG dwCodeNum = 0 ; if (pFeatureCode == NULL ) return NULL ; if (FeatureCodeNum >= 15 ) return NULL ; if (SerSize > 0x1024 ) return NULL ; if (ByName) { if (pFunName == NULL || !MmIsAddressValid(pFunName->Buffer)) return NULL ; pFunAddress = (PUCHAR)MmGetSystemRoutineAddress(pFunName); if (pFunAddress == NULL ) return NULL ; } else { if (pStartAddress == NULL || !MmIsAddressValid(pStartAddress)) return NULL ; pFunAddress = pStartAddress; } for (dwIndex = 0 ; dwIndex < SerSize; dwIndex++) { __try { if (pFunAddress[dwIndex] == pFeatureCode[dwCodeNum] || pFeatureCode[dwCodeNum] == SegCode) { dwCodeNum++; if (dwCodeNum == FeatureCodeNum) return pFunAddress + dwIndex - dwCodeNum + 1 + AddNum; continue ; } dwCodeNum = 0 ; } __except (EXCEPTION_EXECUTE_HANDLER) { return 0 ; } } return 0 ; } PVOID GetMovPoint (PVOID pCallPoint) { ULONG dwOffset = 0 ; ULONG_PTR returnAddress = 0 ; LARGE_INTEGER returnAddressTemp = { 0 }; PUCHAR pFunAddress = NULL ; if (pCallPoint == NULL || !MmIsAddressValid(pCallPoint)) return NULL ; pFunAddress = pCallPoint; RtlCopyMemory(&dwOffset, (PVOID)(pFunAddress + 3 ), sizeof (ULONG)); if ((dwOffset & 0x10000000 ) == 0x10000000 ) { dwOffset = dwOffset + 7 + pFunAddress; returnAddressTemp.QuadPart = (ULONG_PTR)pFunAddress & 0xFFFFFFFF00000000 ; returnAddressTemp.LowPart = dwOffset; returnAddress = returnAddressTemp.QuadPart; return (PVOID)returnAddress; } returnAddress = (ULONG_PTR)dwOffset + 7 + pFunAddress; return (PVOID)returnAddress; } PVOID GetPsLoadedListModule () { UNICODE_STRING usRtlPcToFileHeader = RTL_CONSTANT_STRING(L"RtlPcToFileHeader" ); UNICODE_STRING usPsLoadedModuleList = RTL_CONSTANT_STRING(L"PsLoadedModuleList" ); PVOID Point = NULL ; static PVOID PsLoadedListModule = NULL ; UCHAR shellcode[11 ] = "\x48\x8b\x0d\x60\x60\x60\x60" "\x48\x85\xc9" ; if (PsLoadedListModule) return PsLoadedListModule; if (*NtBuildNumber > 9600 ) { PsLoadedListModule = MmGetSystemRoutineAddress(&usPsLoadedModuleList); return PsLoadedListModule; } Point = GetUndocumentFunctionAddress(&usRtlPcToFileHeader, NULL , shellcode, 10 , 0xff , 0x60 , 0 , TRUE); if (Point == NULL || !MmIsAddressValid(Point)) return NULL ; Point = GetMovPoint(Point); if (Point == NULL || !MmIsAddressValid(Point)) return NULL ; PsLoadedListModule = Point; return PsLoadedListModule; } BOOLEAN ObGetDriverNameByPoint (ULONG_PTR Point, OUT WCHAR* szDriverName) { PLDR_DATA_TABLE_ENTRY Begin = NULL ; PLIST_ENTRY Head = NULL ; PLIST_ENTRY Next = NULL ; Begin = GetPsLoadedListModule(); if (Begin == NULL ) return FALSE; Head = (PLIST_ENTRY)Begin->InLoadOrderLinks.Flink; Next = Head->Flink; do { PLDR_DATA_TABLE_ENTRY Entry = CONTAINING_RECORD(Next, LDR_DATA_TABLE_ENTRY, InLoadOrderLinks); Next = Next->Flink; if ((ULONG_PTR)Entry->DllBase <= Point && Point <= ((ULONG_PTR)Entry->DllBase + Entry->SizeOfImage)) { if (szDriverName == NULL ) return FALSE; RtlZeroMemory(szDriverName, 600 ); RtlCopyMemory(szDriverName, Entry->BaseDllName.Buffer, Entry->BaseDllName.Length); return TRUE; } } while (Next != Head->Flink); return FALSE; }
遍历回调函数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ULONG EnumObRegisterCallBacks () { ULONG c = 0 ; PLIST_ENTRY CurrEntry = NULL ; POB_CALLBACK pObCallback; ULONG64 ObProcessCallbackListHead = 0 ; ULONG64 ObThreadCallbackListHead = 0 ; WCHAR* szDriverBaseName = NULL ; szDriverBaseName = ExAllocatePool(NonPagedPool, 600 ); if (szDriverBaseName == NULL ) return FALSE; RtlZeroMemory(szDriverBaseName, 600 ); GetVersionAndHardCode(); ObProcessCallbackListHead = *(ULONG64*)PsProcessType + ObjectCallbackListOffset; ObThreadCallbackListHead = *(ULONG64*)PsThreadType + ObjectCallbackListOffset; KdPrint(("zeroko:kernel:进程对象回调:\n" )); CurrEntry = ((PLIST_ENTRY)ObProcessCallbackListHead)->Flink; if (CurrEntry == NULL || !MmIsAddressValid(CurrEntry)) { ExFreePool(szDriverBaseName); return 0 ; } do { pObCallback = (POB_CALLBACK)CurrEntry; if (pObCallback->ObHandle != 0 ) { if (ObGetDriverNameByPoint(pObCallback->PreCall, szDriverBaseName)) DbgPrint("zeroko:kernel:>DriverName=%S ObHandle=%p Index=%wZ PreCall=%p PostCall=%p \n" , szDriverBaseName, pObCallback->ObHandle, &pObCallback->ObHandle->AltitudeString, pObCallback->PreCall, pObCallback->PostCall); c++; } CurrEntry = CurrEntry->Flink; } while (CurrEntry != (PLIST_ENTRY)ObProcessCallbackListHead); DbgPrint("zeroko:kernel:->线程对象回调:\n" ); CurrEntry = ((PLIST_ENTRY)ObThreadCallbackListHead)->Flink; if (CurrEntry == NULL || !MmIsAddressValid(CurrEntry)) { ExFreePool(szDriverBaseName); return c; } do { pObCallback = (POB_CALLBACK)CurrEntry; if (pObCallback->ObHandle != 0 ) { if (ObGetDriverNameByPoint(pObCallback->PreCall, szDriverBaseName)) DbgPrint("zeroko:kernel:>DriverName=%S ObHandle=%p Index=%wZ PreCall=%p PostCall=%p \n" , szDriverBaseName, pObCallback->ObHandle, &pObCallback->ObHandle->AltitudeString, pObCallback->PreCall, pObCallback->PostCall); c++; } CurrEntry = CurrEntry->Flink; } while (CurrEntry != (PLIST_ENTRY)ObThreadCallbackListHead); DbgPrint("zeroko:kernel:ObCallback count: %ld\n" , c); ExFreePool(szDriverBaseName); return c; }
遍历部分输出如下:
1 2 3 4 5 6 7 8 9 zeroko:kernel:进程对象回调: zeroko:kernel:>DriverName=360F sFlt.sys ObHandle=FFFFB0837FB8C960 Index=425000 PreCall=FFFFF8055984DF30 PostCall=FFFFF8055984DF90 zeroko:kernel:>DriverName=360B ox64.sys ObHandle=FFFFB0837FB8DE60 Index=382310 PreCall=FFFFF8055991BB20 PostCall=FFFFF8055991BB2C zeroko:kernel:>DriverName=sysdiag.sys ObHandle=FFFFB0837F8D3C90 Index=324600 PreCall=FFFFF80559E562B0 PostCall=0000000000000000 zeroko:kernel:->线程对象回调: zeroko:kernel:>DriverName=360F sFlt.sys ObHandle=FFFFB0837FB8C960 Index=425000 PreCall=FFFFF8055984DF30 PostCall=FFFFF8055984DF90 zeroko:kernel:>DriverName=360B ox64.sys ObHandle=FFFFB0837FB8DE60 Index=382310 PreCall=FFFFF8055991BB20 PostCall=FFFFF8055991BB2C zeroko:kernel:ObCallback count: 5
完美过掉对象保护钩子 [ [绕过回调保护思路] ] :借助于OB_CALLBACK.CALL_BACK_INFO.AltitudeString越大越早被执行的规则,可以通过最早执行的回调钩子记录权限,再配合最晚执行的回调钩子恢复所有权限,以此对抗权限保护.
前面的注册系统回调 做的是让其他进程都没办法以[想要保护的进程]为目标打开进程,而此处做的是:让指定进程打开进程时,不会受到系统回调保护的限制.所以在自定义回调函数中,前者是通过OB_PRE_OPERATION_INFORMATION.Object来判断打开进程的目标进程;后者是通过PsGetCurrentProcessId获取自身pid来判断是不是我们想要绕过保护的进程.
需要用到互斥提同步相关函数:
ExInitializeFastMutex 初始化快速互斥体
ExAcquireFastMutex 请求使用快速互斥体
要同步的代码在上下之间
ExReleaseFastMutex 释放
代码如下:
需要用到的结构 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 typedef struct _LDR_DATA_TABLE_ENTRY { LIST_ENTRY InLoadOrderLinks; LIST_ENTRY InMemoryOrderLinks; LIST_ENTRY InInitializationOrderLinks; PVOID DllBase; PVOID EntryPoint; ULONG SizeOfImage; UNICODE_STRING FullDllName; UNICODE_STRING BaseDllName; ULONG Flags; USHORT LoadCount; USHORT TlsIndex; union { LIST_ENTRY HashLinks; struct { PVOID SectionPointer; ULONG CheckSum; }; }; union { struct { ULONG TimeDateStamp; }; struct { PVOID LoadedImports; }; }; struct _ACTIVATION_CONTEXT * EntryPointActivationContext ; PVOID PatchInformation; } LDR_DATA_TABLE_ENTRY, * PLDR_DATA_TABLE_ENTRY; typedef struct _OPERATION_INFO_ENTRY { LIST_ENTRY ListEntry; OB_OPERATION Operation; ULONG Flags; PVOID Object; POBJECT_TYPE ObjectType; ACCESS_MASK AccessMask; ULONG32 time; } OPERATION_INFO_ENTRY, * POPERATION_INFO_ENTRY;
需要用到的自定义子函数以及全局变量
MyGetTickCount 内核获得系统启动计数
IsMyProcess
Last_CallBack 还原原权限自定义回调函数
First_CallBack 记录原权限的自定义回调函数
ntoskrnl.exe导出的PsInitialSystemProcess 是一个指向system进程的EPROCESS全局变量
其他在注册系统回调时需要用到的结构体
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 #define DRIVER_TAG 'zk14' LIST_ENTRY g_OperationListHead; FAST_MUTEX g_OperationListLock; ULONG MyGetTickCount () { LARGE_INTEGER la; ULONG MyInc; MyInc = KeQueryTimeIncrement(); KeQueryTickCount(&la); la.QuadPart *= MyInc; la.QuadPart /= 10000 ; return la.LowPart; } #define TARGETPROCESSNAME "driverTest.exe" BOOLEAN IsMyProcess () { PEPROCESS Process = NULL ; Process = PsGetCurrentProcess(); if (_strnicmp(TARGETPROCESSNAME, PsGetProcessImageFileName(Process), strlen (TARGETPROCESSNAME)) == 0 ) { return TRUE; } else { return FALSE; } } OB_PREOP_CALLBACK_STATUS Last_CallBack (IN PVOID RegistrationContext, IN POB_PRE_OPERATION_INFORMATION OperationInformation) { PLIST_ENTRY ListEntry; UNREFERENCED_PARAMETER(RegistrationContext); if (IsMyProcess()) { ExAcquireFastMutex(&g_OperationListLock); for (ListEntry = g_OperationListHead.Flink; ListEntry != &g_OperationListHead; ListEntry = ListEntry->Flink) { POPERATION_INFO_ENTRY Entry = (POPERATION_INFO_ENTRY)ListEntry; if (Entry->Operation == OperationInformation->Operation && Entry->Flags == OperationInformation->Flags && Entry->Object == OperationInformation->Object && Entry->ObjectType == OperationInformation->ObjectType) { ULONG32 newAccess = OperationInformation->Parameters->CreateHandleInformation.DesiredAccess; ULONG32 oldAccess = Entry->AccessMask; KdPrint(("zeroko:kernel: Last_CallBack PID=%d <原权限=%llX,新权限=%llX>----->time=%llX line=%d\n" , (ULONG64)PsGetCurrentProcessId(), (ULONG64)(Entry->AccessMask), (ULONG64)newAccess, (ULONG64)Entry->time, (ULONG64)__LINE__)); OperationInformation->Parameters->CreateHandleInformation.DesiredAccess = Entry->AccessMask; OperationInformation->Parameters->DuplicateHandleInformation.DesiredAccess = Entry->AccessMask; RemoveEntryList(&Entry->ListEntry); ExFreePoolWithTag(Entry, DRIVER_TAG); goto Release; } } Release: ExReleaseFastMutex(&g_OperationListLock); } return OB_PREOP_SUCCESS; } OB_PREOP_CALLBACK_STATUS First_CallBack (IN PVOID RegistrationContext, IN POB_PRE_OPERATION_INFORMATION OperationInformation) { POPERATION_INFO_ENTRY NewEntry = NULL ; if (PsGetCurrentProcess() == PsInitialSystemProcess) return OB_PREOP_SUCCESS; if (OperationInformation->ObjectType == PsThreadType) return OB_PREOP_SUCCESS; if (IsMyProcess()) { NewEntry = (POPERATION_INFO_ENTRY)ExAllocatePoolWithTag(NonPagedPool, sizeof (OPERATION_INFO_ENTRY), DRIVER_TAG); if (NewEntry) { NewEntry->Operation = OperationInformation->Operation; NewEntry->Flags = OperationInformation->Flags; NewEntry->Object = OperationInformation->Object; NewEntry->ObjectType = OperationInformation->ObjectType; NewEntry->AccessMask = 0x1fffff ; NewEntry->time = MyGetTickCount(); ExAcquireFastMutex(&g_OperationListLock); InsertTailList(&g_OperationListHead, &NewEntry->ListEntry); KdPrint(("zeroko:kernel:First_CallBack 保存权限=%llX PID=%d time=%llX line=%lld\n" , (ULONG64)OperationInformation->Parameters->CreateHandleInformation.DesiredAccess, (ULONG64)PsGetCurrentProcessId(), (ULONG64)NewEntry->time, (ULONG64)__LINE__)); ExReleaseFastMutex(&g_OperationListLock); } } UNREFERENCED_PARAMETER(RegistrationContext); return OB_PREOP_SUCCESS; } PVOID g_UpperHandle = NULL ; PVOID g_LowerHandle = NULL ; OB_OPERATION_REGISTRATION ObUpperOperationRegistration[] = { { NULL , OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE, First_CallBack, NULL }, { NULL , OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE, First_CallBack, NULL }, }; OB_OPERATION_REGISTRATION ObLowerOperationRegistration[] = { { NULL , OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE, Last_CallBack, NULL }, { NULL , OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE, Last_CallBack, NULL }, }; OB_CALLBACK_REGISTRATION UpperCallbackRegistration = { OB_FLT_REGISTRATION_VERSION, 2 , RTL_CONSTANT_STRING(L"880000" ), NULL , ObUpperOperationRegistration }; OB_CALLBACK_REGISTRATION LowerCallcackRegistration = { OB_FLT_REGISTRATION_VERSION, 2 , RTL_CONSTANT_STRING(L"10000" ), NULL , ObLowerOperationRegistration };
接口函数
安装系统回调的 ObRegisterCallBacksInitBreakProtect
卸载系统回调的 ObRegisterUnload
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 void ObRegisterUnload () { if (NULL != g_LowerHandle) ObUnRegisterCallbacks(g_LowerHandle); if (NULL != g_UpperHandle) ObUnRegisterCallbacks(g_UpperHandle); while (!IsListEmpty(&g_OperationListHead)) ExFreePoolWithTag(RemoveHeadList(&g_OperationListHead), DRIVER_TAG); } BOOLEAN ObRegisterCallBacksInitBreakProtect () { NTSTATUS Status = STATUS_SUCCESS; InitializeListHead(&g_OperationListHead); ExInitializeFastMutex(&g_OperationListLock); ObUpperOperationRegistration[0 ].ObjectType = PsProcessType; ObUpperOperationRegistration[0 ].Operations = OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE; ObUpperOperationRegistration[1 ].ObjectType = PsThreadType; ObUpperOperationRegistration[1 ].Operations = OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE; Status = ObRegisterCallbacks(&UpperCallbackRegistration, &g_UpperHandle); if (!NT_SUCCESS(Status)) { g_UpperHandle = NULL ; goto Exit; } ObLowerOperationRegistration[0 ].ObjectType = PsProcessType; ObLowerOperationRegistration[0 ].Operations = OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE; ObLowerOperationRegistration[1 ].ObjectType = PsThreadType; ObLowerOperationRegistration[1 ].Operations = OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE; Status = ObRegisterCallbacks(&LowerCallcackRegistration, &g_LowerHandle); if (!NT_SUCCESS(Status)) { g_LowerHandle = NULL ; goto Exit; } Exit: if (!NT_SUCCESS(Status)) ObRegisterUnload(); return NT_SUCCESS(Status) ? TRUE : FALSE; }
安装过保护后,遍历系统回调如下:
tp刚开始可以读取,但是过了一会儿又不能访问了,很可能tp有遍历[[句柄表]],找谁打开了自己的句柄,就释放掉.
句柄表遍历相关 x86相关句柄表遍历跳出到句柄表文章
R3句柄遍历
NtQuerySystemInformation 遍历句柄
NtQueryInformationProcess 句柄转pid
NtQueryObject 获取句柄信息 类型 名字
DuplicateHandle 把目标进程的句柄复制到当前进程,类似于内存映射
NtQuerySystemInformation遍历句柄微软API讲解跳转
NTDLL.DLL中有一个函数叫 NtQueryInformationProcess,用它可以将指定类型的进程信息拷贝到某个缓冲。其原型如下:
1 2 3 4 5 6 7 8 9 10 NTSYSAPI NTSTATUS NTAPI NtQueryInformationProcess ( IN HANDLE ProcessHandle, IN PROCESSINFOCLASS InformationClass, OUT PVOID ProcessInformation, IN ULONG ProcessInformationLength, OUT PULONG ReturnLength OPTIONAL ) ;
1 2 3 4 5 6 7 __kernel_entry NTSTATUS NtQuerySystemInformation ( [in] SYSTEM_INFORMATION_CLASS SystemInformationClass, [in, out] PVOID SystemInformation, [in] ULONG SystemInformationLength, [out, optional] PULONG ReturnLength ) ;
实现句柄遍历代码:
下面需要用到的数据结构包含在该头文件中(点击跳转)
完整项目参考
一些名词理解 PG/过PG/KPP/DSE/过DSE/内核越狱/免签加载驱动/API(MSG)HOOK名词理解
KPP:内核补丁保护,详见http://en.wikipedia.org/wiki/Kernel_Patch_Protection
PG:基本可以认为和KPP是一个意思。PatchGuard(正名Kernel Patch Protection)相当于“哨兵”,它的功能是不定时地“巡逻”,检查重要的内核数据结构有没有被篡改,发现篡改就立刻触发蓝屏(也就是Bugcheck 109,CRITICAL_STRUCTURE_CORRUPTION)。
过PG:让PG无法工作,或工作无效。方法基本分为两类,动态(无需重启,重启后失效)和静态(需要重启,重启后一直生效)。
DSE:数字签名强制。全名driver signature enforcement,可以简单理解为“驱动文件必须包含正确的交叉签名”。DSE(Driver Signature Enforcement)相当于“守门员”,在驱动加载前检查数字签名是否有效,无效则拒绝加载进内核;
过DSE:让DSE机制无法工作,或工作无效。方法基本分为两类,动态(无需重启,重启后失效)和静态(需要重启,重启后一直生效)。
免签加载驱动:就是加载一个无签名,或签名无效的驱动。
内核越狱:可以简单理解为{过PG+过DSE}。
关于HOOK:MESSAGE HOOK是RING3的HOOK,所有RING3的HOOK(包括RING3 IAT/EAT/INLINE HOOK)都不被PG限制。RING0里对关键模块(包括但不限于NTOSKRNL.EXE、HAL.DLL、NDIS.SYS等)以及一些关键的表(包括但不限于SSDT、IDT、PsActiveProcessLinks等)的任何修改,都不被PG所允许。
要加载驱动,需要先pass掉DSE,进了内核以后,再看情况考虑要不要干掉PG……
不重启禁用/绕过DSE的方法:
不支持重启的方法:
1.在内存中修改全局变量g_CiEnabled(也就是所谓的flag?)
DSEFix - Defeating x64 Driver Signature Enforcement
需要一个有任意内存读写/执行漏洞 的有合法签名的驱动 先被加载进内核,然后可以利用漏洞完成修改。修改完DSE就被关闭了。
也有带合法签名的驱动直接实现了这个功能,比如WIN64AST这个小工具就有关闭DSE的功能。
缺点:修改会被不定时运行的PatchGuard 检测到,一旦被检测到就会立刻蓝屏 。
可以在要加载驱动时先修改flag来禁用DSE,然后抓紧时间加载驱动,加载完成后再立刻把flag改回去,这样可以大大降低蓝屏的概率。
2.不使用正常的驱动加载途径,使用自己编写的shellcode加载
hfiref0x/TDL
同样需要一个有合法签名的驱动先被加载 ,然后利用这个驱动(可能是利用bug,也可能是驱动自己实现的功能 )来完成无签名驱动的加载。
这个方法的优点是不会触发PatchGuard ,但缺点也很明显:被加载的驱动需要被特殊设计,加载后不支持卸载,不支持SEH,函数导入不正常……限制很多
过保护更多了解
VT技术过PG
驱动开发小技巧:
1 2 #define NT_SUCCESS(Status) (((NTSTATUS)(Status)) >= 0)
驱动层真正完美的隐藏内存
签名相关 32位操作系统上,驱动签名不是强制要求的,所以可以加载未签名的驱动
但在64位系统上,默认情况下无法加载未签名驱动,不过可以通过禁用驱动签名强制(例如通过测试模式)来安装未签名驱动
无签名加载驱动知识点参考
利用漏洞加载驱动,支持win11
目前默认的证书签名算法都是sha-256,通过申请的证书可以使用工具进行双签名,给应用程序或驱动签名的摘要算法就是sha1和sha256,但签发的证书本身签名算法是sha-256,可以通过所以在旧版的操作系统中会出现驱动类文件不兼容。目前在旧版操作系统的内核驱动签名不支持单证书双签名,普通应用程序则支持单证书双签名。
对于内核驱动签名,如果要实现双签名,例如同时在Windows 7 和 Windows 10 上运行,Windows 10则要求使用sha-256的签名算法创建签名,但是Windows 7的内核驱动签名则需要使用sha-1来实现。也就是说对于内核驱动的签名,需要同时购买EV代码签名证书和标准签名证书来实现内核驱动的双签名 。对于普通的应用程序可以使用一张证书来双签名实现兼容性。
签名工具使用 先添加签名规则,再给文件签名.
签名证书原理
运行中输入sigvierif后启动点击开始,分析完后在高级中查看日志可以验证系统所有驱动的签名情况
驱动相关命令 1 2 sc query winio #查询winio.sys的状态 driverquery /v | findstr winio #列出所有已经加载的驱动并过滤winio
64位16进制字符串操作 1 2 3 4 5 6 7 8 ULONG_PTR ulModBase = 0 ; #if defined(_WIN64) ulModBase = _tcstoui64(strParam,NULL ,16 ); #else ulModBase = _tcstoul(strParam,NULL ,16 ); #endif
**[printf的64位16进制输出格式]**为 %016I64x 0表示用0填充空白位置,16表示16个字符,I64表示64位,%x表示输出16进制数
设定驱动和用户层相接数据结构 1 2 3 4 5 6 7 8 9 10 11 #pragma pack(push) #pragma pack(8) typedef struct TINPUT_BUF { UINT64 dwPid; PVOID PBase; UINT64 nSize; } #pragma pack(pop)
R3用到的内核相关结构体大整合 NtDefs.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 #pragma once #include <basetsd.h> #include <iostream> #include <string> #include <Windows.h> namespace NTDEFS { #define IN #define OUT #define OPTIONAL #define NT_SUCCESS(Status) (((NTSTATUS)(Status)) >= 0) #define MAX_STACK_DEPTH 32 #define MAXIMUM_NUMA_NODES 16 #define STATUS_SUCCESS ((NTSTATUS)0x00000000L) #define WINAPI __stdcall typedef unsigned long BOOL; typedef unsigned long ULONG; typedef unsigned int DWORD; typedef unsigned short WORD; typedef unsigned char UCHAR; typedef unsigned short USHORT; typedef long LONG; typedef LONG NTSTATUS; typedef void *PVOID; typedef ULONG *PULONG; typedef ULONG_PTR KAFFINITY; typedef char CCHAR; typedef void * HANDLE; typedef HANDLE HLOCAL; typedef HANDLE * LPHANDLE; typedef UCHAR *PUCHAR; typedef unsigned int UINT; typedef void *LPVOID; typedef SIZE_T SYSINF_PAGE_COUNT; typedef LONG KPRIORITY; typedef wchar_t WCHAR; typedef WCHAR *NWPSTR, *LPWSTR, *PWSTR; typedef char CHAR; typedef CHAR *PCHAR, *LPCH, *PCH; typedef DWORD ACCESS_MASK; typedef struct _UNICODE_STRING { USHORT Length; USHORT MaximumLength; #ifdef MIDL_PASS [size_is(MaximumLength / 2 ), length_is((Length) / 2 )] USHORT * Buffer; #else PWSTR Buffer; #endif } UNICODE_STRING; typedef UNICODE_STRING *PUNICODE_STRING; #if (!defined (_MAC) && (!defined(MIDL_PASS) || defined(__midl)) && (!defined(_M_IX86) || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 64))) typedef __int64 LONGLONG; typedef unsigned __int64 ULONGLONG; #define MAXLONGLONG (0x7fffffffffffffff) #else #if defined(_MAC) && defined(_MAC_INT_64) typedef __int64 LONGLONG; typedef unsigned __int64 ULONGLONG; #define MAXLONGLONG (0x7fffffffffffffff) #else typedef double LONGLONG; typedef double ULONGLONG; #endif #endif #if defined(MIDL_PASS) typedef struct _LARGE_INTEGER { #else typedef union _LARGE_INTEGER { struct { DWORD LowPart; LONG HighPart; } DUMMYSTRUCTNAME; struct { DWORD LowPart; LONG HighPart; } u; #endif LONGLONG QuadPart; } LARGE_INTEGER; typedef unsigned char BYTE; typedef BYTE BOOLEAN; #define FLG_STOP_ON_EXCEPTION 0x00000001 #define FLG_SHOW_LDR_SNAPS 0x00000002 #define FLG_DEBUG_INITIAL_COMMAND 0x00000004 #define FLG_STOP_ON_HUNG_GUI 0x00000008 #define FLG_HEAP_ENABLE_TAIL_CHECK 0x00000010 #define FLG_HEAP_ENABLE_FREE_CHECK 0x00000020 #define FLG_HEAP_VALIDATE_PARAMETERS 0x00000040 #define FLG_HEAP_VALIDATE_ALL 0x00000080 #define FLG_APPLICATION_VERIFIER 0x00000100 #define FLG_POOL_ENABLE_TAGGING 0x00000400 #define FLG_HEAP_ENABLE_TAGGING 0x00000800 #define FLG_USER_STACK_TRACE_DB 0x00001000 #define FLG_KERNEL_STACK_TRACE_DB 0x00002000 #define FLG_MAINTAIN_OBJECT_TYPELIST 0x00004000 #define FLG_HEAP_ENABLE_TAG_BY_DLL 0x00008000 #define FLG_DISABLE_STACK_EXTENSION 0x00010000 #define FLG_ENABLE_CSRDEBUG 0x00020000 #define FLG_ENABLE_KDEBUG_SYMBOL_LOAD 0x00040000 #define FLG_DISABLE_PAGE_KERNEL_STACKS 0x00080000 #define FLG_ENABLE_SYSTEM_CRIT_BREAKS 0x00100000 #define FLG_HEAP_DISABLE_COALESCING 0x00200000 #define FLG_ENABLE_CLOSE_EXCEPTIONS 0x00400000 #define FLG_ENABLE_EXCEPTION_LOGGING 0x00800000 #define FLG_ENABLE_HANDLE_TYPE_TAGGING 0x01000000 #define FLG_HEAP_PAGE_ALLOCS 0x02000000 #define FLG_DEBUG_INITIAL_COMMAND_EX 0x04000000 #define FLG_DISABLE_DBGPRINT 0x08000000 #define FLG_CRITSEC_EVENT_CREATION 0x10000000 #define FLG_LDR_TOP_DOWN 0x20000000 #define FLG_ENABLE_HANDLE_EXCEPTIONS 0x40000000 #define FLG_DISABLE_PROTDLLS 0x80000000 #define PROCESSOR_ARCHITECTURE_INTEL 0 #define PROCESSOR_ARCHITECTURE_MIPS 1 #define PROCESSOR_ARCHITECTURE_ALPHA 2 #define PROCESSOR_ARCHITECTURE_PPC 3 #define PROCESSOR_ARCHITECTURE_SHX 4 #define PROCESSOR_ARCHITECTURE_ARM 5 #define PROCESSOR_ARCHITECTURE_IA64 6 #define PROCESSOR_ARCHITECTURE_ALPHA64 7 #define PROCESSOR_ARCHITECTURE_MSIL 8 #define PROCESSOR_ARCHITECTURE_AMD64 9 #define PROCESSOR_ARCHITECTURE_IA32_ON_WIN64 10 #define STATUS_INFO_LENGTH_MISMATCH ((NTSTATUS)0xC0000004L) #define STATUS_INVALID_INFO_CLASS ((NTSTATUS)0xC0000003L) #define STATUS_ACCESS_VIOLATION ((DWORD )0xC0000005L) #define STATUS_INSUFFICIENT_RESOURCES ((NTSTATUS)0xC000009AL) #define STATUS_WORKING_SET_QUOTA ((NTSTATUS)0xC00000A1L) #define STATUS_NOT_IMPLEMENTED ((NTSTATUS)0xC0000002L) typedef enum _SYSTEM_INFORMATION_CLASS { SystemBasicInformation, SystemProcessorInformation, SystemPerformanceInformation, SystemTimeOfDayInformation, SystemPathInformation, SystemProcessInformation, SystemCallCountInformation, SystemDeviceInformation, SystemProcessorPerformanceInformation, SystemFlagsInformation, SystemCallTimeInformation, SystemModuleInformation, SystemLocksInformation, SystemStackTraceInformation, SystemPagedPoolInformation, SystemNonPagedPoolInformation, SystemHandleInformation, SystemObjectInformation, SystemPageFileInformation, SystemVdmInstemulInformation, SystemVdmBopInformation, SystemFileCacheInformation, SystemPoolTagInformation, SystemInterruptInformation, SystemDpcBehaviorInformation, SystemFullMemoryInformation, SystemLoadGdiDriverInformation, SystemUnloadGdiDriverInformation, SystemTimeAdjustmentInformation, SystemSummaryMemoryInformation, SystemMirrorMemoryInformation, SystemPerformanceTraceInformation, SystemObsolete0, SystemExceptionInformation, SystemCrashDumpStateInformation, SystemKernelDebuggerInformation, SystemContextSwitchInformation, SystemRegistryQuotaInformation, SystemExtendServiceTableInformation, SystemPrioritySeperation, SystemVerifierAddDriverInformation, SystemVerifierRemoveDriverInformation, SystemProcessorIdleInformation, SystemLegacyDriverInformation, SystemCurrentTimeZoneInformation, SystemLookasideInformation, SystemTimeSlipNotification, SystemSessionCreate, SystemSessionDetach, SystemSessionInformation, SystemRangeStartInformation, SystemVerifierInformation, SystemVerifierThunkExtend, SystemSessionProcessInformation, SystemLoadGdiDriverInSystemSpace, SystemNumaProcessorMap, SystemPrefetcherInformation, SystemExtendedProcessInformation, SystemRecommendedSharedDataAlignment, SystemComPlusPackage, SystemNumaAvailableMemory, SystemProcessorPowerInformation, SystemEmulationBasicInformation, SystemEmulationProcessorInformation, SystemExtendedHandleInformation, SystemLostDelayedWriteInformation, SystemBigPoolInformation, SystemSessionPoolTagInformation, SystemSessionMappedViewInformation, SystemHotpatchInformation, SystemObjectSecurityMode, SystemWatchdogTimerHandler, SystemWatchdogTimerInformation, SystemLogicalProcessorInformation, SystemWow64SharedInformation, SystemRegisterFirmwareTableInformationHandler, SystemFirmwareTableInformation, SystemModuleInformationEx, SystemVerifierTriageInformation, SystemSuperfetchInformation, SystemMemoryListInformation, SystemFileCacheInformationEx, SystemPageMemoryInformation = 123 , SystemPolicyInformation = 134 , } SYSTEM_INFORMATION_CLASS, *PSYSTEM_INFORMATION_CLASS; typedef struct _SYSTEM_BASIC_INFORMATION { ULONG Reserved; ULONG TimerResolution; ULONG PageSize; SYSINF_PAGE_COUNT NumberOfPhysicalPages; SYSINF_PAGE_COUNT LowestPhysicalPageNumber; SYSINF_PAGE_COUNT HighestPhysicalPageNumber; ULONG AllocationGranularity; ULONG_PTR MinimumUserModeAddress; ULONG_PTR MaximumUserModeAddress; ULONG_PTR ActiveProcessorsAffinityMask; CCHAR NumberOfProcessors; } SYSTEM_BASIC_INFORMATION, *PSYSTEM_BASIC_INFORMATION; typedef struct _SYSTEM_PROCESSOR_INFORMATION { USHORT ProcessorArchitecture; USHORT ProcessorLevel; USHORT ProcessorRevision; USHORT Reserved; ULONG ProcessorFeatureBits; } SYSTEM_PROCESSOR_INFORMATION, *PSYSTEM_PROCESSOR_INFORMATION; typedef struct _SYSTEM_PERFORMANCE_INFORMATION { LARGE_INTEGER IdleProcessTime; LARGE_INTEGER IoReadTransferCount; LARGE_INTEGER IoWriteTransferCount; LARGE_INTEGER IoOtherTransferCount; ULONG IoReadOperationCount; ULONG IoWriteOperationCount; ULONG IoOtherOperationCount; ULONG AvailablePages; SYSINF_PAGE_COUNT CommittedPages; SYSINF_PAGE_COUNT CommitLimit; SYSINF_PAGE_COUNT PeakCommitment; ULONG PageFaultCount; ULONG CopyOnWriteCount; ULONG TransitionCount; ULONG CacheTransitionCount; ULONG DemandZeroCount; ULONG PageReadCount; ULONG PageReadIoCount; ULONG CacheReadCount; ULONG CacheIoCount; ULONG DirtyPagesWriteCount; ULONG DirtyWriteIoCount; ULONG MappedPagesWriteCount; ULONG MappedWriteIoCount; ULONG PagedPoolPages; ULONG NonPagedPoolPages; ULONG PagedPoolAllocs; ULONG PagedPoolFrees; ULONG NonPagedPoolAllocs; ULONG NonPagedPoolFrees; ULONG FreeSystemPtes; ULONG ResidentSystemCodePage; ULONG TotalSystemDriverPages; ULONG TotalSystemCodePages; ULONG NonPagedPoolLookasideHits; ULONG PagedPoolLookasideHits; ULONG AvailablePagedPoolPages; ULONG ResidentSystemCachePage; ULONG ResidentPagedPoolPage; ULONG ResidentSystemDriverPage; ULONG CcFastReadNoWait; ULONG CcFastReadWait; ULONG CcFastReadResourceMiss; ULONG CcFastReadNotPossible; ULONG CcFastMdlReadNoWait; ULONG CcFastMdlReadWait; ULONG CcFastMdlReadResourceMiss; ULONG CcFastMdlReadNotPossible; ULONG CcMapDataNoWait; ULONG CcMapDataWait; ULONG CcMapDataNoWaitMiss; ULONG CcMapDataWaitMiss; ULONG CcPinMappedDataCount; ULONG CcPinReadNoWait; ULONG CcPinReadWait; ULONG CcPinReadNoWaitMiss; ULONG CcPinReadWaitMiss; ULONG CcCopyReadNoWait; ULONG CcCopyReadWait; ULONG CcCopyReadNoWaitMiss; ULONG CcCopyReadWaitMiss; ULONG CcMdlReadNoWait; ULONG CcMdlReadWait; ULONG CcMdlReadNoWaitMiss; ULONG CcMdlReadWaitMiss; ULONG CcReadAheadIos; ULONG CcLazyWriteIos; ULONG CcLazyWritePages; ULONG CcDataFlushes; ULONG CcDataPages; ULONG ContextSwitches; ULONG FirstLevelTbFills; ULONG SecondLevelTbFills; ULONG SystemCalls; } SYSTEM_PERFORMANCE_INFORMATION, *PSYSTEM_PERFORMANCE_INFORMATION; typedef struct _SYSTEM_TIMEOFDAY_INFORMATION { LARGE_INTEGER BootTime; LARGE_INTEGER CurrentTime; LARGE_INTEGER TimeZoneBias; ULONG TimeZoneId; ULONG Reserved; ULONGLONG BootTimeBias; ULONGLONG SleepTimeBias; } SYSTEM_TIMEOFDAY_INFORMATION, *PSYSTEM_TIMEOFDAY_INFORMATION; typedef struct _SYSTEM_PROCESS_INFORMATION { ULONG NextEntryOffset; ULONG NumberOfThreads; LARGE_INTEGER SpareLi1; LARGE_INTEGER SpareLi2; LARGE_INTEGER SpareLi3; LARGE_INTEGER CreateTime; LARGE_INTEGER UserTime; LARGE_INTEGER KernelTime; UNICODE_STRING ImageName; KPRIORITY BasePriority; HANDLE UniqueProcessId; HANDLE InheritedFromUniqueProcessId; ULONG HandleCount; ULONG SessionId; ULONG_PTR PageDirectoryBase; SIZE_T PeakVirtualSize; SIZE_T VirtualSize; ULONG PageFaultCount; SIZE_T PeakWorkingSetSize; SIZE_T WorkingSetSize; SIZE_T QuotaPeakPagedPoolUsage; SIZE_T QuotaPagedPoolUsage; SIZE_T QuotaPeakNonPagedPoolUsage; SIZE_T QuotaNonPagedPoolUsage; SIZE_T PagefileUsage; SIZE_T PeakPagefileUsage; SIZE_T PrivatePageCount; LARGE_INTEGER ReadOperationCount; LARGE_INTEGER WriteOperationCount; LARGE_INTEGER OtherOperationCount; LARGE_INTEGER ReadTransferCount; LARGE_INTEGER WriteTransferCount; LARGE_INTEGER OtherTransferCount; } SYSTEM_PROCESS_INFORMATION, *PSYSTEM_PROCESS_INFORMATION; typedef struct _SYSTEM_CALL_COUNT_INFORMATION { ULONG Length; ULONG NumberOfTables; } SYSTEM_CALL_COUNT_INFORMATION, *PSYSTEM_CALL_COUNT_INFORMATION; typedef struct _SYSTEM_DEVICE_INFORMATION { ULONG NumberOfDisks; ULONG NumberOfFloppies; ULONG NumberOfCdRoms; ULONG NumberOfTapes; ULONG NumberOfSerialPorts; ULONG NumberOfParallelPorts; } SYSTEM_DEVICE_INFORMATION, *PSYSTEM_DEVICE_INFORMATION; typedef struct _SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION { LARGE_INTEGER IdleTime; LARGE_INTEGER KernelTime; LARGE_INTEGER UserTime; LARGE_INTEGER DpcTime; LARGE_INTEGER InterruptTime; ULONG InterruptCount; } SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION, *PSYSTEM_PROCESSOR_PERFORMANCE_INFORMATION; typedef struct _SYSTEM_FLAGS_INFORMATION { ULONG Flags; } SYSTEM_FLAGS_INFORMATION, *PSYSTEM_FLAGS_INFORMATION; typedef struct _RTL_PROCESS_MODULE_INFORMATION { HANDLE Section; PVOID MappedBase; PVOID ImageBase; ULONG ImageSize; ULONG Flags; USHORT LoadOrderIndex; USHORT InitOrderIndex; USHORT LoadCount; USHORT OffsetToFileName; UCHAR FullPathName[256 ]; } RTL_PROCESS_MODULE_INFORMATION, *PRTL_PROCESS_MODULE_INFORMATION; typedef struct _RTL_PROCESS_MODULES { ULONG NumberOfModules; RTL_PROCESS_MODULE_INFORMATION Modules[1 ]; } RTL_PROCESS_MODULES, *PRTL_PROCESS_MODULES; typedef struct _RTL_PROCESS_LOCK_INFORMATION { PVOID Address; USHORT Type; USHORT CreatorBackTraceIndex; HANDLE OwningThread; LONG LockCount; ULONG ContentionCount; ULONG EntryCount; LONG RecursionCount; ULONG NumberOfWaitingShared; ULONG NumberOfWaitingExclusive; } RTL_PROCESS_LOCK_INFORMATION, *PRTL_PROCESS_LOCK_INFORMATION; typedef struct _RTL_PROCESS_LOCKS { ULONG NumberOfLocks; RTL_PROCESS_LOCK_INFORMATION Locks[1 ]; } RTL_PROCESS_LOCKS, *PRTL_PROCESS_LOCKS; typedef struct _RTL_PROCESS_BACKTRACE_INFORMATION { PCHAR SymbolicBackTrace; ULONG TraceCount; USHORT Index; USHORT Depth; PVOID BackTrace[MAX_STACK_DEPTH]; } RTL_PROCESS_BACKTRACE_INFORMATION, *PRTL_PROCESS_BACKTRACE_INFORMATION; typedef struct _RTL_PROCESS_BACKTRACES { ULONG CommittedMemory; ULONG ReservedMemory; ULONG NumberOfBackTraceLookups; ULONG NumberOfBackTraces; RTL_PROCESS_BACKTRACE_INFORMATION BackTraces[1 ]; } RTL_PROCESS_BACKTRACES, *PRTL_PROCESS_BACKTRACES; typedef struct _SYSTEM_HANDLE_TABLE_ENTRY_INFO { USHORT UniqueProcessId; USHORT CreatorBackTraceIndex; UCHAR ObjectTypeIndex; UCHAR HandleAttributes; USHORT HandleValue; PVOID Object; ULONG GrantedAccess; } SYSTEM_HANDLE_TABLE_ENTRY_INFO, *PSYSTEM_HANDLE_TABLE_ENTRY_INFO; typedef struct _SYSTEM_HANDLE_INFORMATION { ULONG NumberOfHandles; SYSTEM_HANDLE_TABLE_ENTRY_INFO Handles[1 ]; } SYSTEM_HANDLE_INFORMATION, *PSYSTEM_HANDLE_INFORMATION; typedef struct _GENERIC_MAPPING { ACCESS_MASK GenericRead; ACCESS_MASK GenericWrite; ACCESS_MASK GenericExecute; ACCESS_MASK GenericAll; } GENERIC_MAPPING; typedef GENERIC_MAPPING *PGENERIC_MAPPING; typedef struct _SYSTEM_OBJECTTYPE_INFORMATION { ULONG NextEntryOffset; ULONG NumberOfObjects; ULONG NumberOfHandles; ULONG TypeIndex; ULONG InvalidAttributes; GENERIC_MAPPING GenericMapping; ULONG ValidAccessMask; ULONG PoolType; BOOLEAN SecurityRequired; BOOLEAN WaitableObject; UNICODE_STRING TypeName; } SYSTEM_OBJECTTYPE_INFORMATION, *PSYSTEM_OBJECTTYPE_INFORMATION; typedef struct _OBJECT_NAME_INFORMATION { UNICODE_STRING Name; } OBJECT_NAME_INFORMATION, *POBJECT_NAME_INFORMATION; typedef struct _SYSTEM_OBJECT_INFORMATION { ULONG NextEntryOffset; PVOID Object; HANDLE CreatorUniqueProcess; USHORT CreatorBackTraceIndex; USHORT Flags; LONG PointerCount; LONG HandleCount; ULONG PagedPoolCharge; ULONG NonPagedPoolCharge; HANDLE ExclusiveProcessId; PVOID SecurityDescriptor; OBJECT_NAME_INFORMATION NameInfo; } SYSTEM_OBJECT_INFORMATION, *PSYSTEM_OBJECT_INFORMATION; typedef struct _SYSTEM_PAGEFILE_INFORMATION { ULONG NextEntryOffset; ULONG TotalSize; ULONG TotalInUse; ULONG PeakUsage; UNICODE_STRING PageFileName; } SYSTEM_PAGEFILE_INFORMATION, *PSYSTEM_PAGEFILE_INFORMATION; typedef struct _SYSTEM_VDM_INSTEMUL_INFO { ULONG SegmentNotPresent; ULONG VdmOpcode0F; ULONG OpcodeESPrefix; ULONG OpcodeCSPrefix; ULONG OpcodeSSPrefix; ULONG OpcodeDSPrefix; ULONG OpcodeFSPrefix; ULONG OpcodeGSPrefix; ULONG OpcodeOPER32Prefix; ULONG OpcodeADDR32Prefix; ULONG OpcodeINSB; ULONG OpcodeINSW; ULONG OpcodeOUTSB; ULONG OpcodeOUTSW; ULONG OpcodePUSHF; ULONG OpcodePOPF; ULONG OpcodeINTnn; ULONG OpcodeINTO; ULONG OpcodeIRET; ULONG OpcodeINBimm; ULONG OpcodeINWimm; ULONG OpcodeOUTBimm; ULONG OpcodeOUTWimm; ULONG OpcodeINB; ULONG OpcodeINW; ULONG OpcodeOUTB; ULONG OpcodeOUTW; ULONG OpcodeLOCKPrefix; ULONG OpcodeREPNEPrefix; ULONG OpcodeREPPrefix; ULONG OpcodeHLT; ULONG OpcodeCLI; ULONG OpcodeSTI; ULONG BopCount; } SYSTEM_VDM_INSTEMUL_INFO, *PSYSTEM_VDM_INSTEMUL_INFO; typedef struct _SYSTEM_FILECACHE_INFORMATION { SIZE_T CurrentSize; SIZE_T PeakSize; ULONG PageFaultCount; SIZE_T MinimumWorkingSet; SIZE_T MaximumWorkingSet; SIZE_T CurrentSizeIncludingTransitionInPages; SIZE_T PeakSizeIncludingTransitionInPages; ULONG TransitionRePurposeCount; ULONG Flags; } SYSTEM_FILECACHE_INFORMATION, *PSYSTEM_FILECACHE_INFORMATION; typedef struct _SYSTEM_POOLTAG { union { UCHAR Tag[4 ]; ULONG TagUlong; }; ULONG PagedAllocs; ULONG PagedFrees; SIZE_T PagedUsed; ULONG NonPagedAllocs; ULONG NonPagedFrees; SIZE_T NonPagedUsed; } SYSTEM_POOLTAG, *PSYSTEM_POOLTAG; typedef struct _SYSTEM_POOLTAG_INFORMATION { ULONG Count; SYSTEM_POOLTAG TagInfo[1 ]; } SYSTEM_POOLTAG_INFORMATION, *PSYSTEM_POOLTAG_INFORMATION; typedef struct _SYSTEM_INTERRUPT_INFORMATION { ULONG ContextSwitches; ULONG DpcCount; ULONG DpcRate; ULONG TimeIncrement; ULONG DpcBypassCount; ULONG ApcBypassCount; } SYSTEM_INTERRUPT_INFORMATION, *PSYSTEM_INTERRUPT_INFORMATION; typedef struct _SYSTEM_DPC_BEHAVIOR_INFORMATION { ULONG Spare; ULONG DpcQueueDepth; ULONG MinimumDpcRate; ULONG AdjustDpcThreshold; ULONG IdealDpcRate; } SYSTEM_DPC_BEHAVIOR_INFORMATION, *PSYSTEM_DPC_BEHAVIOR_INFORMATION; typedef struct _SYSTEM_MEMORY_INFO { PUCHAR StringOffset; USHORT ValidCount; USHORT TransitionCount; USHORT ModifiedCount; USHORT PageTableCount; } SYSTEM_MEMORY_INFO, *PSYSTEM_MEMORY_INFO; typedef struct _SYSTEM_MEMORY_INFORMATION { ULONG InfoSize; ULONG_PTR StringStart; SYSTEM_MEMORY_INFO Memory[1 ]; } SYSTEM_MEMORY_INFORMATION, *PSYSTEM_MEMORY_INFORMATION; typedef struct _IMAGE_EXPORT_DIRECTORY { DWORD Characteristics; DWORD TimeDateStamp; WORD MajorVersion; WORD MinorVersion; DWORD Name; DWORD Base; DWORD NumberOfFunctions; DWORD NumberOfNames; DWORD AddressOfFunctions; DWORD AddressOfNames; DWORD AddressOfNameOrdinals; } IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY; typedef struct _SYSTEM_GDI_DRIVER_INFORMATION { UNICODE_STRING DriverName; PVOID ImageAddress; PVOID SectionPointer; PVOID EntryPoint; PIMAGE_EXPORT_DIRECTORY ExportSectionPointer; ULONG ImageLength; } SYSTEM_GDI_DRIVER_INFORMATION, *PSYSTEM_GDI_DRIVER_INFORMATION; typedef struct _SYSTEM_SET_TIME_ADJUST_INFORMATION { ULONG TimeAdjustment; BOOLEAN Enable; } SYSTEM_SET_TIME_ADJUST_INFORMATION, *PSYSTEM_SET_TIME_ADJUST_INFORMATION; typedef struct _KSERVICE_TABLE_DESCRIPTOR { PULONG_PTR Base; PULONG Count; ULONG Limit; PUCHAR Number; } KSERVICE_TABLE_DESCRIPTOR, *PKSERVICE_TABLE_DESCRIPTOR; typedef struct _CLIENT_ID { HANDLE UniqueProcess; HANDLE UniqueThread; } CLIENT_ID; typedef CLIENT_ID *PCLIENT_ID; typedef struct _SYSTEM_THREAD_INFORMATION { LARGE_INTEGER KernelTime; LARGE_INTEGER UserTime; LARGE_INTEGER CreateTime; ULONG WaitTime; PVOID StartAddress; CLIENT_ID ClientId; KPRIORITY Priority; LONG BasePriority; ULONG ContextSwitches; ULONG ThreadState; ULONG WaitReason; } SYSTEM_THREAD_INFORMATION, *PSYSTEM_THREAD_INFORMATION; typedef struct _SYSTEM_EXTENDED_THREAD_INFORMATION { SYSTEM_THREAD_INFORMATION ThreadInfo; PVOID StackBase; PVOID StackLimit; PVOID Win32StartAddress; ULONG_PTR Reserved1; ULONG_PTR Reserved2; ULONG_PTR Reserved3; ULONG_PTR Reserved4; } SYSTEM_EXTENDED_THREAD_INFORMATION, *PSYSTEM_EXTENDED_THREAD_INFORMATION; typedef struct _SYSTEM_EXCEPTION_INFORMATION { ULONG AlignmentFixupCount; ULONG ExceptionDispatchCount; ULONG FloatingEmulationCount; ULONG ByteWordEmulationCount; } SYSTEM_EXCEPTION_INFORMATION, *PSYSTEM_EXCEPTION_INFORMATION; typedef struct _SYSTEM_KERNEL_DEBUGGER_INFORMATION { BOOLEAN KernelDebuggerEnabled; BOOLEAN KernelDebuggerNotPresent; } SYSTEM_KERNEL_DEBUGGER_INFORMATION, *PSYSTEM_KERNEL_DEBUGGER_INFORMATION; typedef struct _SYSTEM_CONTEXT_SWITCH_INFORMATION { ULONG ContextSwitches; ULONG FindAny; ULONG FindLast; ULONG FindIdeal; ULONG IdleAny; ULONG IdleCurrent; ULONG IdleLast; ULONG IdleIdeal; ULONG PreemptAny; ULONG PreemptCurrent; ULONG PreemptLast; ULONG SwitchToIdle; } SYSTEM_CONTEXT_SWITCH_INFORMATION, *PSYSTEM_CONTEXT_SWITCH_INFORMATION; typedef struct _SYSTEM_REGISTRY_QUOTA_INFORMATION { ULONG RegistryQuotaAllowed; ULONG RegistryQuotaUsed; SIZE_T PagedPoolSize; } SYSTEM_REGISTRY_QUOTA_INFORMATION, *PSYSTEM_REGISTRY_QUOTA_INFORMATION; typedef struct _SYSTEM_PROCESSOR_IDLE_INFORMATION { ULONGLONG IdleTime; ULONGLONG C1Time; ULONGLONG C2Time; ULONGLONG C3Time; ULONG C1Transitions; ULONG C2Transitions; ULONG C3Transitions; ULONG Padding; } SYSTEM_PROCESSOR_IDLE_INFORMATION, *PSYSTEM_PROCESSOR_IDLE_INFORMATION; typedef struct _SYSTEM_LEGACY_DRIVER_INFORMATION { ULONG VetoType; UNICODE_STRING VetoList; } SYSTEM_LEGACY_DRIVER_INFORMATION, *PSYSTEM_LEGACY_DRIVER_INFORMATION; typedef short CSHORT; typedef struct _TIME_FIELDS { CSHORT Year; CSHORT Month; CSHORT Day; CSHORT Hour; CSHORT Minute; CSHORT Second; CSHORT Milliseconds; CSHORT Weekday; } TIME_FIELDS; typedef struct _RTL_TIME_ZONE_INFORMATION { LONG Bias; WCHAR StandardName[32 ]; TIME_FIELDS StandardStart; LONG StandardBias; WCHAR DaylightName[32 ]; TIME_FIELDS DaylightStart; LONG DaylightBias; } RTL_TIME_ZONE_INFORMATION, *PRTL_TIME_ZONE_INFORMATION; typedef struct _SYSTEM_LOOKASIDE_INFORMATION { USHORT CurrentDepth; USHORT MaximumDepth; ULONG TotalAllocates; ULONG AllocateMisses; ULONG TotalFrees; ULONG FreeMisses; ULONG Type; ULONG Tag; ULONG Size; } SYSTEM_LOOKASIDE_INFORMATION, *PSYSTEM_LOOKASIDE_INFORMATION; typedef struct _SYSTEM_VERIFIER_INFORMATION { ULONG NextEntryOffset; ULONG Level; UNICODE_STRING DriverName; ULONG RaiseIrqls; ULONG AcquireSpinLocks; ULONG SynchronizeExecutions; ULONG AllocationsAttempted; ULONG AllocationsSucceeded; ULONG AllocationsSucceededSpecialPool; ULONG AllocationsWithNoTag; ULONG TrimRequests; ULONG Trims; ULONG AllocationsFailed; ULONG AllocationsFailedDeliberately; ULONG Loads; ULONG Unloads; ULONG UnTrackedPool; ULONG CurrentPagedPoolAllocations; ULONG CurrentNonPagedPoolAllocations; ULONG PeakPagedPoolAllocations; ULONG PeakNonPagedPoolAllocations; SIZE_T PagedPoolUsageInBytes; SIZE_T NonPagedPoolUsageInBytes; SIZE_T PeakPagedPoolUsageInBytes; SIZE_T PeakNonPagedPoolUsageInBytes; } SYSTEM_VERIFIER_INFORMATION, *PSYSTEM_VERIFIER_INFORMATION; typedef struct _SYSTEM_SESSION_PROCESS_INFORMATION { ULONG SessionId; ULONG SizeOfBuf; PVOID Buffer; } SYSTEM_SESSION_PROCESS_INFORMATION, *PSYSTEM_SESSION_PROCESS_INFORMATION; typedef struct _SYSTEM_SESSION_POOLTAG_INFORMATION { SIZE_T NextEntryOffset; ULONG SessionId; ULONG Count; SYSTEM_POOLTAG TagInfo[1 ]; } SYSTEM_SESSION_POOLTAG_INFORMATION, *PSYSTEM_SESSION_POOLTAG_INFORMATION; typedef struct _SYSTEM_NUMA_INFORMATION { ULONG HighestNodeNumber; ULONG Reserved; union { ULONGLONG ActiveProcessorsAffinityMask[MAXIMUM_NUMA_NODES]; ULONGLONG AvailableMemory[MAXIMUM_NUMA_NODES]; }; } SYSTEM_NUMA_INFORMATION, *PSYSTEM_NUMA_INFORMATION; typedef struct _SYSTEM_PROCESSOR_POWER_INFORMATION { UCHAR CurrentFrequency; UCHAR ThermalLimitFrequency; UCHAR ConstantThrottleFrequency; UCHAR DegradedThrottleFrequency; UCHAR LastBusyFrequency; UCHAR LastC3Frequency; UCHAR LastAdjustedBusyFrequency; UCHAR ProcessorMinThrottle; UCHAR ProcessorMaxThrottle; ULONG NumberOfFrequencies; ULONG PromotionCount; ULONG DemotionCount; ULONG ErrorCount; ULONG RetryCount; ULONGLONG CurrentFrequencyTime; ULONGLONG CurrentProcessorTime; ULONGLONG CurrentProcessorIdleTime; ULONGLONG LastProcessorTime; ULONGLONG LastProcessorIdleTime; } SYSTEM_PROCESSOR_POWER_INFORMATION, *PSYSTEM_PROCESSOR_POWER_INFORMATION; typedef struct _SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX { PVOID Object; ULONG_PTR UniqueProcessId; ULONG_PTR HandleValue; ULONG GrantedAccess; USHORT CreatorBackTraceIndex; USHORT ObjectTypeIndex; ULONG HandleAttributes; ULONG Reserved; } SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX, *PSYSTEM_HANDLE_TABLE_ENTRY_INFO_EX; typedef struct _SYSTEM_HANDLE_INFORMATION_EX { ULONG_PTR NumberOfHandles; ULONG_PTR Reserved; SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX Handles[1 ]; } SYSTEM_HANDLE_INFORMATION_EX, *PSYSTEM_HANDLE_INFORMATION_EX; typedef struct _SYSTEM_BIGPOOL_ENTRY { union { PVOID VirtualAddress; ULONG_PTR NonPaged : 1 ; }; SIZE_T SizeInBytes; union { UCHAR Tag[4 ]; ULONG TagUlong; }; } SYSTEM_BIGPOOL_ENTRY, *PSYSTEM_BIGPOOL_ENTRY; typedef struct _SYSTEM_BIGPOOL_INFORMATION { ULONG Count; SYSTEM_BIGPOOL_ENTRY AllocatedInfo[1 ]; } SYSTEM_BIGPOOL_INFORMATION, *PSYSTEM_BIGPOOL_INFORMATION; typedef struct _SYSTEM_SESSION_MAPPED_VIEW_INFORMATION { SIZE_T NextEntryOffset; ULONG SessionId; ULONG ViewFailures; SIZE_T NumberOfBytesAvailable; SIZE_T NumberOfBytesAvailableContiguous; } SYSTEM_SESSION_MAPPED_VIEW_INFORMATION, *PSYSTEM_SESSION_MAPPED_VIEW_INFORMATION; typedef enum _WATCHDOG_HANDLER_ACTION { WdActionSetTimeoutValue, WdActionQueryTimeoutValue, WdActionResetTimer, WdActionStopTimer, WdActionStartTimer, WdActionSetTriggerAction, WdActionQueryTriggerAction, WdActionQueryState } WATCHDOG_HANDLER_ACTION; typedef enum _WATCHDOG_INFORMATION_CLASS { WdInfoTimeoutValue, WdInfoResetTimer, WdInfoStopTimer, WdInfoStartTimer, WdInfoTriggerAction, WdInfoState } WATCHDOG_INFORMATION_CLASS; typedef NTSTATUS (*PWD_HANDLER) (IN WATCHDOG_HANDLER_ACTION Action, IN PVOID Context, IN OUT PULONG DataValue, IN BOOLEAN NoLocks) ; typedef struct _SYSTEM_WATCHDOG_HANDLER_INFORMATION { PWD_HANDLER WdHandler; PVOID Context; } SYSTEM_WATCHDOG_HANDLER_INFORMATION, *PSYSTEM_WATCHDOG_HANDLER_INFORMATION; typedef struct _SYSTEM_WATCHDOG_TIMER_INFORMATION { WATCHDOG_INFORMATION_CLASS WdInfoClass; ULONG DataValue; } SYSTEM_WATCHDOG_TIMER_INFORMATION, *PSYSTEM_WATCHDOG_TIMER_INFORMATION; typedef enum _LOGICAL_PROCESSOR_RELATIONSHIP { RelationProcessorCore, RelationNumaNode, RelationCache, RelationProcessorPackage, RelationGroup, RelationAll = 0xffff } LOGICAL_PROCESSOR_RELATIONSHIP; typedef enum _PROCESSOR_CACHE_TYPE { CacheUnified, CacheInstruction, CacheData, CacheTrace } PROCESSOR_CACHE_TYPE; typedef struct _CACHE_DESCRIPTOR { BYTE Level; BYTE Associativity; WORD LineSize; DWORD Size; PROCESSOR_CACHE_TYPE Type; } CACHE_DESCRIPTOR, *PCACHE_DESCRIPTOR; typedef struct _SYSTEM_LOGICAL_PROCESSOR_INFORMATION { ULONG_PTR ProcessorMask; LOGICAL_PROCESSOR_RELATIONSHIP Relationship; union { struct { BYTE Flags; } ProcessorCore; struct { DWORD NodeNumber; } NumaNode; CACHE_DESCRIPTOR Cache; ULONGLONG Reserved[2 ]; } DUMMYUNIONNAME; } SYSTEM_LOGICAL_PROCESSOR_INFORMATION, *PSYSTEM_LOGICAL_PROCESSOR_INFORMATION; typedef enum _SYSTEM_FIRMWARE_TABLE_ACTION { SystemFirmwareTable_Enumerate, SystemFirmwareTable_Get } SYSTEM_FIRMWARE_TABLE_ACTION; #ifndef ANYSIZE_ARRAY #define ANYSIZE_ARRAY 1 #endif typedef struct _SYSTEM_FIRMWARE_TABLE_INFORMATION { ULONG ProviderSignature; SYSTEM_FIRMWARE_TABLE_ACTION Action; ULONG TableID; ULONG TableBufferLength; UCHAR TableBuffer[ANYSIZE_ARRAY]; } SYSTEM_FIRMWARE_TABLE_INFORMATION, *PSYSTEM_FIRMWARE_TABLE_INFORMATION; typedef NTSTATUS (__cdecl *PFNFTH) (PSYSTEM_FIRMWARE_TABLE_INFORMATION) ; typedef struct _SYSTEM_FIRMWARE_TABLE_HANDLER { ULONG ProviderSignature; BOOLEAN Register; PFNFTH FirmwareTableHandler; PVOID DriverObject; } SYSTEM_FIRMWARE_TABLE_HANDLER, *PSYSTEM_FIRMWARE_TABLE_HANDLER; extern "C" BOOL WINAPI DuplicateHandle ( _In_ HANDLE hSourceProcessHandle, _In_ HANDLE hSourceHandle, _In_ HANDLE hTargetProcessHandle, _Out_ LPHANDLE lpTargetHandle, _In_ DWORD dwDesiredAccess, _In_ BOOL bInheritHandle, _In_ DWORD dwOptions ) ; typedef enum _OBJECT_INFORMATION_CLASS { ObjectBasicInformation, ObjectNameInformation, ObjectTypeInformation, ObjectAllInformation, ObjectDataInformation, } OBJECT_INFORMATION_CLASS; extern "C" NTSTATUS WINAPI NtQueryObject ( _In_opt_ HANDLE Handle, _In_ OBJECT_INFORMATION_CLASS ObjectInformationClass, _Out_opt_ PVOID ObjectInformation, _In_ ULONG ObjectInformationLength, _Out_opt_ PULONG ReturnLength ) ; } extern "C" { NTDEFS::KSERVICE_TABLE_DESCRIPTOR* KeServiceDescriptorTableShadow; NTSTATUS __stdcall NtQuerySystemInformation (IN NTDEFS::SYSTEM_INFORMATION_CLASS SystemInformationClass, OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG ReturnLength OPTIONAL) ; HLOCAL __stdcall LocalAlloc (IN UINT uFlags, SIZE_T uBytes) ; LPVOID __stdcall LocalLock (IN HLOCAL hMem) ; HLOCAL __stdcall LocalFree (IN HLOCAL hMem) ; } extern "C" NTSTATUS NTAPI NtQueryInformationProcess ( IN HANDLE ProcessHandle, IN UINT InformationClass, OUT PVOID ProcessInformation, IN ULONG ProcessInformationLength, OUT PULONG ReturnLength OPTIONAL ) ;typedef PVOID PPEB;typedef struct _PROCESS_BASIC_INFORMATION { PVOID Reserved1; PPEB PebBaseAddress; PVOID Reserved2[2 ]; ULONG_PTR UniqueProcessId; PVOID Reserved3; } PROCESS_BASIC_INFORMATION;